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Abstract. A number of criteria have been proposed to judge test suite adequacy.
While search-based test generation has improved greatly at criteria coverage, the
produced suites are still often ineffective at detecting faults. Efficacy may be lim-
ited by the single-minded application of one criterion at a time when generating
suites—a sharp contrast to human testers, who simultaneously explore multiple
testing strategies. We hypothesize that automated generation can be improved by
selecting and simultaneously exploring multiple criteria.
To address this hypothesis, we have generated multi-criteria test suites, measuring
efficacy against the Defects4J fault database. We have found that multi-criteria
suites can be up to 31.15% more effective at detecting complex, real-world faults
than suites generated to satisfy a single criterion and 70.17% more effective than
the default combination of all eight criteria. Given a fixed search budget, we rec-
ommend pairing a criterion focused on structural exploration—such as Branch
Coverage—with targeted supplemental strategies aimed at the type of faults ex-
pected from the system under test. Our findings offer lessons to consider when
selecting such combinations.

Keywords: Search-based Test Generation, Automated Test Generation, Adequacy Cri-
teria, Search-based Software Engineering

1 Introduction

With the exponential growth in the complexity of software, the cost of testing has risen
accordingly. One way to lower costs without sacrificing quality may lie in automat-
ing the generation of test input [1]. Consider search-based generation—given a testing
goal, and a scoring function denoting closeness to attainment of that goal, optimization
algorithms can search for input that achieves that goal [12].

As we cannot know what faults exist a priori, dozens of criteria—ranging from
the measurement of structural coverage to the detection of synthetic faults [14]—have
been proposed to judge testing adequacy. In theory, if such criteria are fulfilled, tests
should be adequate at detecting faults. Adequacy criteria are important for search-based
generation, as they can guide the search [12].

Search techniques have improved greatly in terms of achieved coverage [2]. How-
ever, the primary goal of testing is not coverage, but fault detection. In this regard,
automated generation often does not produce human competitive results [2, 3, 5, 15].



If automation is to impact testing practice, it must match—or, ideally, outperform—
manual testing in terms of fault-detection efficacy.

The current use of adequacy criteria in automated generation sharply contrasts how
such criteria are used by humans. For a human, coverage typically serves an advisory
role—as a way to point out gaps in existing efforts. Human testers build suites in which
adequacy criteria contribute to a multifaceted combination of testing strategies. Previous
research has found that effectiveness of a criterion can depend on factors such as how
expressions are written [4] and the types of faults that appear in the system [6]. Humans
understand such concepts. They build and vary their testing strategy based on the needs
of their current target. Yet, in automated generation, coverage is typically the goal, and
a single criterion is applied at a time.

However, search-based techniques need not be restricted to one criterion at a time.
The test obligations of multiple criteria can be combined into a single score or simul-
taneously satisfied by multi-objective optimization algorithms. We hypothesize that the
efficacy of automated generation can be improved by applying a targeted, multifaceted
approach—where multiple testing strategies are selected and simultaneously explored.

In order to examine the efficacy of suites generated by combining criteria, we have
used EvoSuite and eight coverage criteria to generate multi-criteria test suites—as sug-
gested by three selection strategies—with efficacy judged against the Defects4J fault
database [10]. Based on experimental observations, we added additional configura-
tions centered around the use of two criteria, Exception and Method Coverage, that
performed poorly on their own, but were effective in combination with other criteria.

By examining the proportion of suites that detect each fault for each configuration,
we can examine the effect of combining coverage criteria on the efficacy of search-
based test generation, identify the configurations that are more effective than single-
criterion generation, and explore situations where particular adequacy criteria can ef-
fectively cooperate to detect faults. To summarize our findings:

– For all systems, at least one combination is more effective than a single criterion,
offering efficacy improvements of 14.84-31.15% over the best single criterion.

– The most effective combinations pair a structure-focused criterion—such as Branch
Coverage—with supplemental strategies targeted at the class under test.
• Across the board, effective combinations include Exception Coverage. As it

can be added to a configuration with minimal effect on generation complexity,
we recommend it as part of any generation strategy.

• Method Coverage can offer an additional low-cost efficacy boost.
• Additional targeted criteria—such as Output Coverage for code that manipu-

lates numeric values or Weak Mutation Coverage for code with complex logical
expressions—offer further efficacy improvements.

Our findings offer lessons to consider when selecting such combinations, and a
starting point in discovering the best combination for a given system.

2 Background

As we cannot know what faults exist without verification, and as testing cannot—except
in simple cases—conclusively prove the absence of faults, a suitable approximation



must be used to measure the adequacy of testing efforts. Common methods of measur-
ing adequacy involve coverage of structural elements of the software, such as individual
statements, points where control can branch, and complex boolean expressions [7].

The idea of measuring adequacy through coverage is simple, but compelling: unless
code is executed, many faults are unlikely to be found. If tests execute elements in the
manner prescribed by the criterion, than testing is deemed “adequate” with respect to
faults that manifest through such structures. Adequacy criteria have seen widespread
use in software development, as they offer clear checklists of testing goals that can be
objectively evaluated and automatically measured [7]. Importantly, they offer stopping
criteria, advising on when testing can conclude. These very same qualities make ade-
quacy criteria ideal for use as automated test generation targets.

Of the thousands of test cases that could be generated for any SUT, we want to
select—systematically and at a reasonable cost—those that meet our goals [12]. Given
scoring functions denoting closeness to the attainment of those goals—called fitness
functions—optimization algorithms can sample from a large and complex set of options
as guided by a chosen strategy (the metaheuristic). Metaheuristics are often inspired
by natural phenomena. For example, genetic algorithms evolve a group of candidate
solutions by filtering out bad “genes” and promoting fit solutions [2].

Due to the non-linear nature of software, resulting from branching control struc-
tures, the search space of a real-world program is large and complex. Metaheuristic
search—by strategically sampling from that space—can scale effectively to large prob-
lems. Such approaches have been applied to a wide variety of testing scenarios [1].

While adequacy has been used in almost all generation methods, it is particularly
relevant to metaheuristic search-based generation. In search-based generation, the fit-
ness function must capture the testing objective and provide feedback to guide the
search. Through this guidance, the fitness function has a major impact on the quality of
the solutions generated. Adequacy criteria are common optimization targets for auto-
mated test case generation, as they can be straightforwardly transformed into distance
functions that lead to the search to better solutions [12].

3 Study

We hypothesize that the efficacy of automated generation can be improved by selecting
and simultaneously exploring a combination of testing strategies. In particular—in this
project—we are focused on combinations of common adequacy criteria.

Rojas et al. previously found that multiple fitness functions could be combined with
minimal loss in coverage of any single criterion and with a reasonable increase in test
suite size [14]. Indeed, recent versions of the EvoSuite framework1 now, by default,
combine eight coverage criteria when generating tests. However, their work did not
assess the effect of combining criteria on the fault-detection efficacy of the generated
suites. We intend to focus on the performance of suites generated using a combination
of criteria. In particular, we wish to address the following research questions:
1. Do test suites generated using a combination of two or more coverage criteria have

a higher likelihood of fault detection than suites generated using a single criterion?
1 Available from http://evosuite.org



2. For each system, and across all systems, which combinations are most effective?
3. What effect does an increased search budget have on the studied combinations?
4. Which criteria best pair together to increase the likelihood of fault detection?

The first two questions establish a basic understanding of the effectiveness of criteria
combinations—given fixed search budgets, are any of the combinations more effec-
tive at fault detection than suites generated to satisfy a single criterion? Further, we
hypothesize that the most effective combination will vary across systems. We wish to
understand the degree to which results differ across the studied systems, and whether
the search budget plays a strong role in determining the resulting efficacy of a combi-
nation. In each of these cases, we would also like to better understand why and when
particular combinations are effective.

In order to examine the efficacy of suites generated using such combinations, we
have first applied EvoSuite and eight coverage criteria to generate test suites for the
systems in the Defects4J fault database [10]. We have performed the following:
1. Collected Case Examples: We have used 353 real faults, from five Java projects,

as test generation targets (Section 3.1).
2. Generated Test Cases: For each fault, we generated 10 suites per criterion using

the fixed version of each class-under-test (CUT). We use both a two-minute and a
ten-minute search budget per CUT (Section 3.2).

3. Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or that
return inconsistent results, are automatically removed (Section 3.2).

4. Assessed Fault-finding Effectiveness: For each fault, we measure the proportion
of test suites that detect the fault to the number generated.
Following single-criterion generation, we applied three different selection strategies

to build sets of multi-criteria configurations for each system (described in Section 3.3).
We generated suites, following the steps above, using each of the configurations sug-
gested by these strategies, as well as EvoSuite’s default eight-criteria configuration.
Based on our initial observations, we added additional configurations centered around
two criteria—Exception and Method Coverage—that performed poorly on their own,
but were effective in combination with other criteria (See Section 4).

3.1 Case Examples

Defects4J is an extensible database of real faults extracted from Java projects [10]2.
Currently, it consists of 357 faults from five projects: JFreeChart (26 faults), Closure
compiler (133 faults), Apache Commons Lang (65 faults), Apache Commons Math
(106 faults), and JodaTime (27 faults). Four faults from the Math project were omitted
due to complications encountered during suite generation, leaving 353.

3.2 Test Suite Generation

EvoSuite uses a genetic algorithm to evolve test suites over a series of generations,
forming a new population by retaining, mutating, and combining the strongest solutions.

2 Available from http://defects4j.org



It is actively maintained and has been successfully applied to a variety of projects [15].
We used the following fitness functions, corresponding to common coverage criteria3:

Branch Coverage (BC): A test suite satisfies BC if all control-flow branches are taken
by at least one test case—the test suite contains at least one test whose execution eval-
uates the branch predicate to true, and at least one whose execution evaluates to
false. To guide the search, the fitness function calculates the branch distance from
the point where the execution path diverged from the targeted branch. If an undesired
branch is taken, the function describes how “close” the targeted predicate is to being
true, using a cost function based on the predicate formula [14].

Direct Branch Coverage (DBC): Branch Coverage may be attained by calling a method
directly, or indirectly—calling a method within another method. DBC requires each
branch to be covered through a direct call.

Line Coverage (LC): A test suite satisfies LC if it executes each non-comment line
of code at least once. To cover each line, EvoSuite tries to ensure that each basic code
block is reached. The branch distance is computed for each branch that is a control
dependency of any of the statements in the CUT. For each conditional statement that
is a control dependency for some other line, EvoSuite requires that the branch of the
statement leading to the dependent code is executed.

Exception Coverage (EC): EC rewards test suites that force the CUT to throw more
exceptions—either declared or undeclared. As the number of possible exceptions that a
class can throw cannot be known ahead of time, the fitness function rewards suites that
throw the largest observed number of exceptions.

Method Coverage (MC): MC simply requires that all methods in the CUT be executed
at least once, either directly or indirectly.

Method Coverage (Top-Level, No Exception) (MNEC): Test suites sometimes achieve
MC while calling methods in an invalid state or with invalid parameters. MNEC requires
that all methods be called directly and terminate without throwing an exception.

Output Coverage (OC): OC rewards diversity in method output by mapping return
types to abstract values. A test suite satisfies OC if, for each public method, at least
one test yields a concrete value characterized by each abstract value. For numeric data
types, distance functions guide the search by comparing concrete and abstract values.

Weak Mutation Coverage (WMC): Suites that detect more mutants may be effective
at detecting real faults as well. A test suite satisfies WMC if, for each mutated statement,
at least one test detects the mutation. The search is guided by the infection distance, a
variant of branch distance tuned towards detecting mutated statements.

To generate for multiple criteria, EvoSuite calculates the fitness score as a linear
combination of the objectives for all of the criteria [14]. No ordering is imposed on the
criteria when generating—combinations such as BC-LC and LC-BC are equivalent.

Test suites are generated for each class reported as faulty, using the fixed version of
the CUT. They are applied to the faulty version in order to eliminate the oracle problem.
This translates to a regression testing scenario, where tests guard against future issues.

3 Rojas et. al provide a primer on each fitness function [14].



Two search budgets were used—two minutes and ten minutes per class–allowing us
to examine the effect of increasing the search budget. To control experiment cost, we
deactivated assertion filtering—all possible regression assertions are included. All other
settings were kept at their default values. As results may vary, we performed 10 trials
for each fault and search budget, generating an initial pool of 56,480 test suites.

Generation tools may generate flaky (unstable) tests [15]. For example, a test case
that makes assertions about the system time will only pass during generation. We au-
tomatically remove flaky tests. First, non-compiling test cases are removed. Then, each
test is executed on the fixed CUT five times. If results are inconsistent, the test case is
removed. On average, less than one percent of the tests are removed from each suite.

3.3 Selecting Criteria Combinations

Budget Chart Closure Lang Math Time Overall

BC 120 45.00% 4.66% 34.00% 27.94% 34.82% 22.07%
600 48.46% 5.79% 40.15% 32.75% 39.26% 25.61%

DBC 120 34.23% 5.11% 30.00% 24.51% 31.11% 19.43%
600 40.77% 6.09% 38.77% 28.63% 40.37% 23.80%

EC 120 22.31% 1.35% 7.54% 6.37% 9.26% 6.09%
600 21.54% 0.98% 9.23% 7.06% 9.63% 6.43%

LC 120 38.85% 4.14% 31.23% 25.78% 30.00% 19.92%
600 46.15% 4.81% 34.31% 29.22% 36.67% 22.78%

MC 120 30.77% 1.58% 7.54% 10.98% 8.15% 8.05%
600 30.77% 2.26% 7.69% 10.88% 8.15% 8.30%

MNEC 120 23.46% 2.18% 6.62% 12.16% 6.67% 7.79%
600 30.77% 1.88% 7.54% 12.06% 5.19% 8.24%

OC 120 21.15% 2.03% 7.85% 16.57% 9.63% 9.29%
600 23.85% 2.56% 10.92% 16.76% 12.22% 10.51%

WMC 120 38.08% 4.44% 24.15% 23.04% 25.19% 17.51%
600 46.15% 5.56% 32.15% 27.45% 27.04% 21.42%

Table 1. Average likelihood of fault detection for single-
criterion generation, divided by budget and system.

Overall, suites generated to
satisfy a single criterion detect
180 (50.99%) of the 353 stud-
ied faults. The average likeli-
hood of fault detection is listed
for each single criterion, by
system and budget, in Table 1.

BC is the most effective
single criterion, detecting 158
of the 353 faults. BC suites
have an average likelihood
of fault detection of 22.07%
given a two-minute search bud-
get and 25.61% given a ten-
minute budget. Line and Direct

Branch Coverage follow with a 19.92-22.78% and 19.43-23.80% likelihood of detec-
tion. DBC and WMC benefit the most from an increased search budget, with average
improvements of 22.45% and 22.33%. Criteria with distance-driven fitness functions—
BC, DBC, LC, WMC, and, partially, OC—improve the most given more time.

We seek to identify whether combinations of criteria can outperform the top single
criterion for each system—either BC or DBC. Studying all possible combinations is
infeasible—even restricting to combinations of four criteria would result in 1,680 con-
figurations. To control experiment cost, we have employed three strategies to suggest
combinations. We have also used Evosuite’s default configuration of all eight criteria.
We perform selection using each strategy for each system and search budget, then build
combinations using the entire pool of faults in order to suggest general combinations.
The suggested combinations are then used to generate suites. All combinations are ap-
plied ten times per search budget. To converse space, we do not list all combinations.
However, the top combinations are named and discussed in Section 4. The three selec-
tion strategies include:

“Top-Ranked” Strategy: This simple strategy build combinations by selecting the top
two to four coverage criteria, as seen in Table 1, and combining them.



“Boost” Strategy: This strategy aims to select secondary criteria that “back up” a cen-
tral criterion—the criterion that performed best on its own—in situations where that
central criterion performs poorly. To select the additional criteria, the pool of faults is
filtered for examples where that central criterion had <= 30% likelihood of fault de-
tection. Then, two to four top-ranked criteria from that filtered pool are selected for
the combination. Criteria are only selected if they are more effective than the central
criterion post-filtering.
“Unique Faults” Strategy: This greedy strategy favors the criteria that detect the high-
est number of unique faults. Combinations of criteria are selected by choosing the cri-
terion that produced suites that detected the most faults, removing those faults from
consideration, and choosing from the remaining faults and criteria. Ties are broken at
random. Selection stops once four criteria are chosen, or if no faults remain.

Together, these three strategies (and EvoSuite’s default) yielded 12 combinations
for Chart, 12 for Closure, 17 for Lang, 14 for Math, and 11 for Time—resulting in the
generation of 94,760 test suites.

4 Results & Discussion

Tables 2-3 show—for each system, and across all systems—the combinations that are
more effective than the top single criterion for the two-minute and ten-minute search
budgets. We also list the performance of EvoSuite’s default combination of eight crite-
ria. Combinations outperformed by the top criterion, except for the default, are omitted.
For the overall results, only combinations generated for all systems are considered. The
abbreviations for each criterion are listed in Section 3.2. For each combination, we note
the strategies that suggested the combination and the average efficacy. In Table 3, we
also note the improvement from the increased budget.

For all systems and both budgets, at least one combination outperforms the top
single criterion. This validates our core hypothesis—the likelihood of fault detection
can be increased by combining criteria. As can be seen in Tables 2 and 3, EvoSuite’s
default combination of all eight criteria rarely manages to outperform the top single
criterion. As the number of criteria expands, the difficulty of the search process also
grows. While criteria can work together to produce more effective suites, there is a
point where the generation task becomes too difficult to achieve within the selected
budget. Our observations, instead, point towards the wisdom of choosing a targeted set
of criteria for the CUT.

We proposed three strategies to suggest combinations—the Top-Ranked, Boosting,
and Unique Faults strategies. Examining the results of this experiment, the Unique
Faults strategy seems to produce the best overall results, suggesting nine of the top
strategies for the two-minute budget and 24 for the ten-minute budget. The Boosting
strategy suggests only three for the two-minute budget and 17 for the ten-minute bud-
get, and the Top Ranked strategy suggests seven for the two-minute budget and 14 for
the ten-minute budget.

However, while these strategies have yielded effective combinations, we cannot rec-
ommend any of them as a general-purpose strategy for testing new systems. Each also
suggested a large number of ineffective combinations. With a two-minute budget, only



System Combination Strategy Efficacy

Chart
Default - 47.30%

BC - 45.00%

Closure
BC-LC TR, UF 6.00%
DBC - 5.10%

Default - 4.50%

Lang

BC-EC-LC-MC UF 40.00%
BC-EC UF 39.40%
BC-LC TR, BS, UF 36.50%

BC-EC-LC UF 35.70%
BC-DBC TR, BS, UF 35.50%

BC-LC-DBC TR, BS 34.00%
BC - 34.00%

Default - 23.80%

Math

BC-LC-OC-EC UF 32.40%
BC-LC TR, UF 31.90%

BC - 27.90%
Default - 25.80%

Time
DBC-BC-LC TR, BS 35.20%

BC - 34.80%
Default - 25.90%

Overall
BC-LC TR, UF 24.00%

BC - 22.10%
Default - 19.00%

Table 2. Efficacy (average likelihood
of fault detection) for the initial set of
combinations, when generated with a
two-minute search budget. TR = Top-
Ranked Strategy, BS = Boosting Strat-
egy, UF = Unique Faults Strategy.

System Combination Strategy Efficacy Improvement
From Budget

Chart

BC-LC-WMC-EC UF 57.30% 35.46%
BC-EC-DBC BS 55.80% 28.28%

BC-EC BS 54.60% 23.53%
BC-DBC-WMC-OC UF 49.20% 54.23%

BC-LC-WMC TR, UF 48.90% 49.71%
BC-WMC-MC BS 48.90% 27.01%

BC-WMC BS, UF 48.80% 39.43%
BC - 48.50% 7.78%

Default - 48.10% 1.69%

Closure

BC-LC TR, UF 7.6% 26.67%
BC-LC-DBC TR 7.30% 48.98%

BC-LC-WMC-EC UF 7.20% 94.59%
BC-DBC TR, BS, UF 7.10% 51.05%
Default - 7.10% 57.78%

BC-WMC-DBC-LC TR, BS 7.00% 42.86%
DBC-WMC BS, UF 6.80% 61.90%
BC-WMC BS 6.50% 54.76%

DBC-WMC-BC TR, BS, UF 6.40% 60.00%
DBC - 6.10% 19.61%

Lang

BC-EC UF 47.50% 20.56%
BC-EC-LC-MC UF 45.70% 14.25%

BC-EC-LC UF 45.70% 28.00%
BC-LC-DBC TR, BS 42.30% 24.41%

BC-LC-WMC-EC UF 41.70% 44.79%
BC-DBC TR, BS, UF 41.10% 12.60%
BC-LC TR, BS, UF 40.90% 12.05%

BC - 40.20% 18.24%
Default - 32.60% 36.97%

Math

BC-LC-OC-EC UF 38.00% 17.28%
BC-OC-LC BS, UF 35.80% 31.62%

BC-OC BS 34.70% 24.82%
BC-OC-LC-WMC BS, UF 33.70% 22.99%

BC-LC TR, UF 31.90% 3.76%
BC-LC-WMC-EC UF 33.00% 21.32%

BC - 32.80% 17.56%
Default - 32.80% 27.13%

Time

DBC-BC TR, BS, UF 43.30% 39.22%
DBC-BC-LC TR, BS 41.50% 17.90%

DBC - 40.40% 29.90%
Default - 33.33% 28.68%

Overall

BC-LC-WMC-EC UF 26.90% 33.83%
BC-LC TR, UF 26.40% 10.00%

BC-DBC TR, BS, UF 25.80% 20.00%
BC-LC-DBC TR 25.60% 28.00%

BC - 25.60% 15.84%
Default - 24.20% 27.39%

Table 3. Efficacy for the initial set of com-
binations (ten-minute search budget).

28% of the the Top Ranked strategy combinations were effective. For the Boosting
strategy, the total was only 8%, and for the Unique Faults strategy, the total was only
19%. With a ten-minute budget, 56% of the combinations for the Top Ranked strategy
were effective. For the Boosting strategy, this was 45%, and for the Unique Faults strat-
egy, the total was 50%. Therefore, while the basic hypothesis—that combinations can
outperform a single criterion—seems to be valid, more research is needed in how to
determine the best combination.

4.1 Additional Configurations

Following test generation, we noticed that (a) Exception Coverage was frequently se-
lected as part of combinations, despite performing poorly on its own, and (2), that these
combinations are often highly effective. For example, the top combinations for Chart,
Lang, and Math in Tables 2-3 all contain EC. Of the studied criteria, EC is unique in
that it does not prescribe static test obligations. Rather, it simply rewards suites that



System Combination Efficacy

Chart Default 47.30%
BC 45.00%

Closure

BC-LC 6.00%
BC-LC-EC 5.70%
DBC-EC 5.10%

DBC 5.10%
Default 4.50%

Lang

BC-EC-LC-MC 40.00%
BC-EC* 39.40%

BC-LC-EC* 35.70%
BC 34.00%

Default 23.80%

Math

BC-LC-OC-EC 32.40%
BC-EC 31.70%

BC 27.90%
Default 25.80%

Time

BC-EC 39.60%
DBC-BC-LC-EC 39.30%

DBC-EC 37.80%
DBC-BC-LC 35.20%

BC 34.80%
Default 25.90%

Overall

BC-EC 24.50%
BC-LC 24.00%

BC-LC-EC 22.40%
BC 22.10%

Default 19.00%
Table 4. Efficacy of Exception Coverage-
based combinations (two-minute budget).
The top combination from Table 2, top sin-
gle criterion, and EvoSuite’s default com-
bination are shown for context. A * means
that the combination was also suggested by
a previous strategy.

System Combination Efficacy Improvement
From Budget

Chart

BC-LC-WMC-EC 57.30% 35.46%
BC-EC* 54.60% 23.53%

BC-LC-EC 50.40% 14.81%
BC 48.50% 7.78%

Default 48.10% 1.69%

Closure

BC-LC 7.6% 26.67%
BC-LC-EC 7.40% 29.82%

BC-EC 7.10% 47.92%
Default 7.10% 57.78%
DBC 6.10% 19.61%

Lang

BC-EC* 47.50% 20.56%
BC-LC-EC* 45.70% 28.00%

BC 40.20% 18.24%
Default 32.60% 36.97%

Math

BC-LC-OC-EC 38.00% 17.28%
BC-EC 34.00% 7.25%

BC 32.80% 17.56%
Default 32.80% 27.13%

Time

BC-EC 44.80% 13.13%
DBC-BC-EC 44.10% 38.25%

DBC-BC 43.30% 39.22%
DBC-BC-LC-EC 42.60% 8.40%

BC-LC-EC 41.10% 18.10%
DBC-EC 41.10% 8.73%

DBC 40.40% 29.90%
Default 33.33% 28.68%

Overall

BC-EC 28.70% 17.14%
BC-LC-EC 27.50% 22.77%

BC-LC-WMC-EC 26.90% 33.83%
BC 25.60% 15.84%

Default 24.20% 27.39%
Table 5. Efficacy of EC-based combina-
tions (ten-minute budget). The top com-
bination from Table 3, top single crite-
rion, and EvoSuite’s default combination
are shown for context.

cause more exceptions to be thrown. This means that it can be added to a combination
with little increase in search complexity.

To further study the potential of EC as a “low-cost” addition to combinations, we
added a set of additional combinations to our study. Specifically, we generated tests for
all systems using the BC-EC and BC-LC-EC combinations—the combination of EC
with the overall best single criterion, and the combination of EC with the best overall
combination seen to this point. As DBC outperformed BC for the Closure and Time sys-
tems, we also generated tests for the DBC-EC combination in those two cases. Finally,
as the top-ranked combination Time lacked EC, we added the DBC-BC-LC-EC and
DBC-BC-EC combinations for that system. In total, this adds one new configuration
for Chart, three for Closure, zero for Lang, two for Math, and five for Time—resulting
in the generation of an additional 15,280 test suites.

Results can be seen in Tables 4 and 5 for the two budgets. From these results, we
can see that—almost universally—the best observed combination of criteria includes
Exception Coverage. In fact, the best overall configuration—up to this point—is a sim-
ple combination of BC and EC. The simplicity of EC explains its poor performance as
the primary criterion. It lacks a feedback mechanism to drive generation towards ex-
ceptions. However, EC appears to be effective when paired with criteria that effectively
explore the structure of the CUT, such as Branch or Line Coverage. Exception Cover-



System Combination Efficacy

Chart Default 47.30%
BC 45.00%

Closure

BC-LC 6.00%
BC-LC-EC 5.70%
BC-EC-MC 5.60%
BC-LC-MC 5.30%

DBC 5.10%
Default 4.50%

Lang

BC-EC-MC 40.50%
BC-EC-LC-MC* 40.00%

BC-EC 39.40%
BC-LC-MC 38.00%

BC 34.00%
Default 23.80%

Math

BC-LC-OC-EC-MC 32.90%
BC-LC-OC-EC 32.40%

BC-EC 31.70%
BC-EC-MC 30.40%

BC-EC-LC-MC 30.20%
BC 27.90%

Default 25.80%

Time

BC-EC 39.60%
BC-EC-MC 35.90%
DBC-BC-LC 35.20%

BC 34.80%
Default 25.90%

Overall

BC-EC 24.50%
BC-EC-MC 24.30%

BC-LC 24.00%
BC-EC-LC-MC 23.60%

BC-LC-MC 22.20%
BC 22.10%

Default 19.00%
Table 6. Efficacy of Method Coverage-
based combinations (two-minute budget).
The top combinations from Tables 2 and 4,
top single criterion, and EvoSuite’s default
combination are are shown for context. A *
means that the combination was also sug-
gested by a previous strategy.

System Combination Efficacy Improvement
From Budget

Chart

BC-LC-WMC-EC 57.30% 35.46%
BC-EC 54.60% 23.53%

BC-EC-MC 53.90% 25.06%
BC-LC-EMC-EC-MC 53.50% 19.96%

BC 48.50% 7.78%
Default 48.10% 1.69%

Closure

BC-EC-MC 8.00% 42.86%
BC-EC-LC-MC 7.70% 54.00%

BC-LC 7.6% 26.67%
BC-LC-EC 7.40% 29.82%

Default 7.10% 57.78%
DBC 6.10% 19.61%

Lang

BC-EC-MC 48.20% 19.01%
BC-EC 47.50% 20.56%

BC-EC-LC-MC* 45.70% 14.25%
BC-LC-MC 43.70% 15.00%

BC 40.20% 18.24%
Default 32.60% 36.97%

Math

BC-LC-OC-EC-MC 39.00% 18.54%
BC-LC-OC-EC 38.00% 17.28%

BC-EC-MC 34.30% 12.83%
BC-EC-LC-MC 34.10% 12.91%

BC-EC 34.00% 7.25%
BC 32.80% 17.56%

Default 32.80% 27.13%

Time

BC-EC-MC 47.00% 30.92%
BC-EC 44.80% 13.13%

DBC-BC 43.30% 39.22%
BC-EC-LC-MC 41.10% 18.10%

DBC 40.40% 29.90%
Default 33.33% 28.68%

Overall

BC-EC-MC 29.40% 20.99%
BC-EC 28.70% 17.14%

BC-EC-LC-MC 27.80% 17.80%
BC-LC-WMC-EC 26.90% 33.83%

BC-LC-MC 25.60% 15.31%
BC 25.60% 15.84%

Default 24.20% 27.39%
Table 7. Efficacy of MC-based combina-
tions (ten-minute budget). Top combina-
tions from Tables 3 and 5, top single cri-
terion, and EvoSuite’s default combination
are shown for context.

age adds little cost in terms of generation difficulty, and almost universally outperforms
the use of Branch Coverage alone.

An example of effective combination can be seen in fault 60 for Lang4—a case
where two methods can look beyond the end of a string. No single criterion is effec-
tive, with a maximum of 10% chance of detection given a two-minute budget and 20%
with a ten-minute budget. However, combining BC and EC boosts the likelihood of de-
tection to 40% and 90% for the two budgets. In this case, if the fault is triggered, the
incorrect string access will cause an exception to be thrown. However, this only occurs
under particular circumstances. Therefore, EC alone never detects the fault. BC pro-
vides the necessary means to drive program execution to the correct location. However,
two suites with an equal coverage score are considered equal. BC alone may priori-
tize suites with slightly higher (or different) coverage, missing the fault. By combining

4
https://github.com/apache/commons-lang/commit/a8203b65261110c4a30ff69fe0da7a2390d82757.



the two, exception-throwing tests are prioritized and retained, succeeding where either
criterion would fail alone.

Given that EC can boost the likelihood of fault detection without a substantial cost
increase, it seems reasonable to look for other “low-cost” criteria that could provide a
similar effect. The two forms of Method Coverage used in this project are ideal can-
didates. In general, a class will not have a large number of methods, and methods
are either covered or not covered. Additionally, MC also appears in some of the top
combinations—such as those for Lang—despite poor performance on its own.

Therefore, we have also generated tests for the BC-EC-MC, BC-LC-MC, and BC-
EC-LC-MC combinations for all systems. We have also added MC to the top combina-
tion for any system that did not already have one of the above as the resulting combi-
nation, adding BC-LC-WMC-EC-MC for Chart and BC-LC-OC-EC-MC for Math. In
total, this adds four new combinations for Chart, three for Closure, two for Lang, four
for Math, and three for Time—yielding 22,400 additional test suites.

The results of these combinations can be seen in Tables 6-7. With a two-minute
budget, the addition of Method Coverage can improve results—as seen in Lang, where
BC-EC-MC outperforms BC-EC, and Math, where BC-LC-OC-EC-MC outperforms
BC-LC-OC-EC. However, in other cases—such as with Closure and Time—the ad-
dition of MC decreases efficacy. Results improve across the board with a ten-minute
budget, where the top combinations for Closure, Lang, Math, and Time all contain MC.
Overall, with a ten-minute budget, the combination of BC-EC-MC outperforms any
other blanket policy. It seems that MC can improve a combination, but does not have
the same impact as EC. Given a high enough search budget, we do recommend its in-
clusion. An example where the addition of MC could boost efficacy can be seen in Lang
fault 345. This fault resides in two small (1-2 line) methods. Calling either method will
reveal the fault, but BC can easily overlook them.

4.2 Observations and Recommendations

We can address each research question in turn. First:

For all systems and search budgets, at least one combination of criteria is more
effective than a single criterion, with the top combination offering a 5.11-31.15%
improvement in the likelihood of fault detection over the best single criterion and

up to 70.17% improvement over the default combination of all eight criteria.

For each budget B, combination C, and individual criterion I , we formulate hy-
pothesis H and null hypothesis H0:

– H: With budget B, test suites generated using X will have a higher likelihood of
fault detection than suites generated using I .

– H0: Observations of efficacy for C and I are drawn from the same distribution.
Due to the limited number of faults for Chart and Time, we have focused on over-

all results. Our observations are drawn from an unknown distribution; therefore, we
cannot fit our data to a theoretical probability distribution. To evaluate H0 without

5
https://github.com/apache/commons-lang/commit/496525b0d626dd5049528cdef61d71681154b660



any assumptions on distribution, we use a one-sided (strictly greater) Mann-Whitney-
Wilcoxon rank-sum test, a non-parametric hypothesis test for determining if one set of
observations is drawn from a different distribution than another set of observations. We
apply the test for each pairing of fitness function and search budget with α = 0.05.

To save space, we focus on the top combinations—BC-EC for the two-minute bud-
get and BC-EC-MC for the ten-minute budget. At the two-minute search budget, we can
reject the null hypothesis for MC, MNEC, EC, OC (all<0.001), and WMC (0.030). We
cannot reject the null hypothesis for DBC (0.055), LC (0.057), or BC (0.304). At the
ten-minute level, we can reject the null hypothesis for MC, MNEC, EC, OC, WMC, LC
(all < 0.001), DBC (0.017), and BC (0.040). Therefore, the BC-EC-MC combination
significantly outperforms all individual criteria, given sufficient search budget.

From Tables 3, 5, and 7, we can see that the search budget affects the efficacy of
combinations. At a higher budget, more combinations outperform individual criteria,
and the performance gap between combinations and individual criteria widens. While
combinations can outperform individual criteria at the two-minute budget, a larger bud-
get clearly benefits combinations.

As more criteria are added, the generation task becomes more complex. There is
a trade-off to be made in terms of the required search budget and the efficacy of the
results. The default eight-way combination of criteria, even with a ten-minute budget,
is ineffective in the majority of cases. While an even higher budget may help, we have
seen that simple, targeted combinations can perform very well, even with a tight budget.

This leads, naturally, to the next question—which combinations are effective, in
practice? At the two minute budget, a combination of all eight criteria is the most ef-
fective for Chart. BC-LC is best for Closure. For Lang, it is CB-EC-MC. For Math, it
is BC-LC-OC-EC-MC. Finally, for Time, it is BC-EC. The best general policy, at that
budget, is the BC-EC combination. More consensus is seen at the ten-minute budget
level, where the BC-EC-MC combination is the best observed for Closure, Lang, and
Time (and is the best general policy). For Chart, the top combination is BC-LC-WMC-
EC. For Math, is is BC-LC-OC-EC-MC.

We do not wish to advocate these as the best possible combinations. Even for the
studied systems, we did not exhaustively try all possibilities. Further, while performance
gains are reasonably significant, better performance is likely possible. Rather, we wish
to use this study to derive a starting point for those who wish to generate effective tests.

Either Branch or DBC was found to be the most effective single criterion. Tests that
fail to execute faulty lines of code are highly unlikely to reveal a fault, so a criterion
intended to achieve code coverage should form the core of a combination. However,
code coverage is not sufficient on its own. Merely executing code does not ensure a
failure—how that code is executed is important. From our results, we can observe that
the most effective combinations pair a structure-focused criterion with a small num-
ber of supplemental strategies that can guide the structure-based criterion towards the
correct input for the CUT.

Across the board, effective combinations include Exception Coverage. As EC can be
added to a combination with minimal effect on generation complexity, we recommend
it as part of any generation strategy. Although Method Coverage does not have the clear



symbiotic relationship with BC that EC has, it offers a slight boost to efficacy at a low
cost. We recommend its inclusion in combinations with a longer search budget.

We recommend a combination of Branch or Direct Branch Coverage with
Exception and Method Coverage as a base approach to test generation. Additional

criteria, targeted towards the CUT, may further improve efficacy.

We observed several situations where the central structure-based criterion is boosted
by secondary criteria. First, Output Coverage often assists in revealing faults for Math.
OC divides the data type of the method output into a series of abstract values, then
rewards suites that cover each of those classes. In particular, OC offers the search feed-
back for numeric data types [14], explaining its utility for Math. For example, consider
Fault 536. The patch removes a misbehaving check for NaN . As the fixed version
removes code, BC does not reveal the fault. However, Output Coverage ensures that
method calls return a variety of values—raising the likelihood of fault detection.

Weak Mutation Coverage can also boost BC. Consider Lang fault 287. BC alone
fails to detect the fault, while WMC alone has a 40% chance of detection. A BC-WMC
combination has a 90% chance of detection. The patched code includes an if-condition
that can be mutated in several ways. BC assists in mutation detection by driving execu-
tion to, and into, the if-block. This combination is effective for other similar faults.

Combining structure-focused criteria seems potentially redundant. However, BC-
LC and BC-DBC combinations can be effective (see Table 7). Consider Closure fault
948. No single criterion detects the fault. However, at the ten-minute budget, the BC-LC
combination has a 30% detection likelihood. The BC-LC combination is not only more
effective, but also achieves higher levels of coverage. BC suites attain an average of
54.91% LC and 37.46% BC. LC-based suites attain 58.94% LC and 33.99% BC. Suites
generated using the combination achieve 59.09% LC and 42.45% BC. By attaining
higher coverage, the combination is more likely to execute the faulty code.

While more research is needed to identify situations where criteria work well to-
gether, developers should be able to produce more effective test cases using automated
generation by considering the CUT and choosing criteria accordingly.

5 Related Work

Advocates of adequacy criteria hypothesize that there should exist a correlation be-
tween higher attainment of a criterion and fault detection efficacy [7]. Researchers have
attempted to address whether such a correlation exists for almost as long as such criteria
have existed [13, 5, 8]. Inozemtseva et al. provide a good overview [8].

Shamshiri et al. applied EvoSuite (Branch Coverage only), Randoop, and Agitar to
each fault in Defects4J to assess the fault-detection capabilities of automated genera-
tion [15]. They found that the combination of tools could detect 55.70% of the faults.

6
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/
53.src.patch

7
https://github.com/apache/commons-lang/commit/3e1afecc200d7e3be9537c95b7cf52a7c5031300

8
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/
patches/94.src.patch



Their work identifies several reasons why faults were not detected, including low levels
of coverage, heavy use of private methods and variables, and issues with simulation
of the execution environment. Our recent experiments expand on this work, comparing
fitness functions from EvoSuite in terms of fault detection efficacy [3].

Rojas et al. previously found that, given a fixed generation budget, multiple fitness
functions could be combined with minimal loss in coverage of any single criterion and
with a reasonable increase in test suite size [14]. Others have explored combinations of
coverage criteria with non-functional criteria, such as memory consumption [11] or ex-
ecution time [16]. Few have studied the effect of such combinations on fault detection.
Jeffrey et al. found that combinations are effective following suite reduction [9].

6 Threats to Validity

External Validity: We have focused on five systems. We believe such systems are
representative of small to medium-sized open-source Java systems, and that we have
examined a sufficient number of faults to offer generalizable results.

We have used only one test generation framework. While other techniques may
yield different results, no other framework offers the same variety of coverage criteria.
Therefore, a more thorough comparison of tool performance cannot be made. While
exact results may differ, we believe that general trends will remain the same, as the
underlying criteria follow the same philosophy.

To control costs, we have only performed ten trials per combination of fault, budget,
and configuration. Additional trials may yield different results. However, we believe
that 134,300 suites is a sufficient number to draw conclusions.
Conclusion Validity: When using statistical analysis, we ensure base assumptions are
met. We use non-parametric methods, as distribution characteristics are not known.

7 Conclusions

In this work, we have examined the effect of combining coverage criteria on the efficacy
of search-based test generation, identified effective combinations, and explored situa-
tions where criteria can cooperate to detect faults. For all systems, we have found that at
least one combination is more effective than individual criteria, with the top combina-
tions offering up to a 31.15% improvements in efficacy over top individual criteria. The
most effective combinations pair a criterion focused on structure exploration—such as
Branch Coverage—with a small number of targeted supplemental strategies suited to
the CUT. Our findings offer lessons to consider when selecting such combinations.

Although we recommend the combination of Branch, Exception, and Method Cov-
erage as a starting point, further research is needed to determine how to select the best
combination for a system. In future work, we plan to focus on automated means of
selecting combinations, perhaps using hyperheuristic search.
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