
The Fitness Function for the Job: Search-Based

Generation of Test Suites that Detect Real Faults

Gregory Gay

Department of Computer Science & Engineering

University of South Carolina, USA

greg@greggay.com

Abstract—Search-based test generation, if effective at fault
detection, can lower the cost of testing. Such techniques rely on
fitness functions to guide the search. Ultimately, such functions
represent test goals that approximate—but do not ensure—fault
detection. The need to rely on approximations leads to two
questions—can fitness functions produce effective tests and, if so,
which should be used to generate tests?

To answer these questions, we have assessed the fault-detection
capabilities of the EvoSuite framework and eight of its fitness
functions on 353 real faults from the Defects4J database. Our
analysis has found that the strongest indicator of effectiveness is
a high level of code coverage. Consequently, the branch coverage
fitness function is the most effective. Our findings indicate
that fitness functions that thoroughly explore system structure
should be used as primary generation objectives—supported by
secondary fitness functions that vary the scenarios explored.

I. INTRODUCTION

Proper verification practices are needed to ensure that

developers deliver reliable software. Testing is an invalu-

able, widespread verification technique. However, testing is

a notoriously expensive and difficult activity [32], and with

exponential growth in the complexity of software, the cost of

testing has risen accordingly. Means of lowering the cost of

testing without sacrificing verification quality are needed.

Much of that cost can be traced directly to the human effort

required to conduct most testing activities, such as producing

test input and expected output. We believe the key to lowering

such costs lies in the use of automation to ease this manual

burden [3]. Automation has great potential in this respect, as

much of the invested human effort is in service of tasks that

can be framed as search problems [21].

Test case generation can naturally be seen as a search

problem [3]. There are hundreds of thousands of test cases

that could be generated for any particular class under test

(CUT). Given a well-defined testing goal, and a numeric

scoring function denoting closeness to the attainment of that

goal—called a fitness function—optimization algorithms can

systematically search the space of possible test inputs to locate

those that meet that goal [28].

The effective use of search-based generation relies on the

performance of two tasks—selecting a measurable test goal

and selecting an effective fitness function for meeting that goal.

Adequacy criteria offer checklists of measurable test goals,

such as the execution of branches in the control-flow of the

CUT [26], [34], [35]. Often, however, goals such as “coverage

of branches” are an approximation of a goal that is harder

to quantify—we really want tests that will reveal faults [1].

“Finding faults” is not a goal that can be measured, and cannot

be cleanly translated into a distance function.

To generate effective tests, we must identify criteria—and

corresponding fitness functions—that are correlated with an

increased probability of fault detection. If branch coverage

is, in fact, correlated with fault detection, then—even if we

do not care about the concept of branch coverage itself—we

will end up with effective tests. However, the need to rely

on approximations leads to two questions. First, can common

fitness functions produce effective tests? If so, which of the

many available fitness functions should be used to generate

tests? Unfortunately, testers are faced with a bewildering

number of options—an informal survey of two years of testing

literature reveals 28 viable fitness functions—and there is little

guidance on when to use one criterion over another [16].

While previous studies on the effectiveness of adequacy

criteria have yielded inconclusive results [33], [30], [23],

[16], two factors now allow us to more deeply examine this

problem—particularly with respect to search-based generation.

First, tools are now available that implement enough fitness

functions to make unbiased comparisons. The EvoSuite frame-

work offers over twenty options, and uses a combination of

eight fitness functions in its default configuration [11]. Second,

more realistic examples are available for use in assessment of

suites. Much of the previous work on adequacy effectiveness

has been assessed using mutants—synthetic faults created

through source code transformation [24]. Whether mutants

correspond to the types of faults found in real projects has not

been firmly established [19]. However, the Defects4J project

offers a large database of real faults extracted from open-

source Java projects [25]. We can use these faults to assess

the effectiveness of search-based generation on the complex

faults found in real software.

We have used EvoSuite and eight of its fitness functions (as

well as the default multi-objective configuration) to generate

test suites for the five systems, and 353 of the faults, in the

Defects4J database. In each case, we recorded the proportion

of suites that detect the fault and a number of factors—related

to suite size, obligation satisfaction, and attained coverage.

By analyzing these factors, we can begin to understand not

only the real-world applicability of the fitness options in

EvoSuite, but—through the use of learning algorithms—the

factors correlating with a high likelihood of fault detection.

To summarize our findings:

• Collectively, 51.84% of the examined faults were detected

by generated test suites.

• EvoSuite’s branch coverage criterion is the most

effective—detecting more faults than any other criterion

and demonstrating a 11.06-245.31% higher likelihood of

detection for each fault than other criteria.

• There is evidence that combinations of criteria could be

more effective than a single criterion—almost all criteria

uniquely detect one or more faults, and in cases where the

top-scoring criterion performs poorly, at least one other

criterion would more capably detect the fault.

• Yet, while EvoSuite’s default combination performs well,

the difficulty of simultaneously balancing eight functions

prevents it from outperforming all criteria.

• High levels of coverage over the fixed version of the CUT

and over patched lines of code are the factors that most

strongly correlate with suite effectiveness.

• While others have found that test suite size correlates

to mutant detection, we found that larger suites are not

necessarily more effective at detecting real faults.

Theories learned from the collected metrics suggest that suc-

cessful criteria thoroughly explore and exploit the code being

tested. The strongest fitness functions—branch, direct branch,

line, and weak mutation coverage—all do so. We suggest the

use of such criteria as primary fitness functions. However, our

findings also indicate that coverage does not guarantee success.

The fitness function must still execute the code in a manner

that triggers the fault, and ensures that it manifests in a failure.

Almost all of the criteria were useful in some case and could be

applied as secondary testing goals to boost the fault-detection

capabilities of the primary criterion—either as part of a multi-

objective approach or through the generation of a separate test

suite. More research is needed to better understand the factors

that contribute to fault detection, and the joint relationship

between the fitness function, generation algorithm, and CUT

in determining the efficacy of test suites. However, our findings

represent a step towards understanding the use, applicability,

and combination of common fitness functions.

II. BACKGROUND

A. Search-Based Software Test Generation

Test case creation can naturally be seen as a search prob-

lem [21]. Of the thousands of test cases that could be generated

for any SUT, we want to select—systematically and at a

reasonable cost—those that meet our goals [28], [1]. Given

a well-defined testing goal, and a scoring function denoting

closeness to the attainment of that goal—called a fitness

function—optimization algorithms can sample from a large

and complex set of options as guided by a chosen strategy (the

metaheuristic) [5]. Metaheuristics are often inspired by natural

phenomena, such as swarm behavior [7] or evolution [22].

Due to the non-linear nature of software, resulting from

branching control structures, the search space of a real-world

program is large and complex [1]. Metaheuristic search—by

strategically sampling from that space—can scale to larger

problems than many other generation algorithms [27]. Such

approaches have been applied to a wide variety of testing goals

and scenarios [1].

B. Adequacy Metrics and Fitness Functions

When testing, developers must judge: (a) whether the pro-

duced tests are effective and (b) when they can stop writing

additional tests. These two factors are linked. If existing tests

have not surfaced any faults, is the software correct, or are

the tests inadequate? The same question applies when adding

new tests—if we have not observed new faults, have we not

yet written adequate tests?

The concept of adequacy provides developers with the

guidance needed to test effectively. As we cannot know what

faults exist without verification, and as testing cannot—except

in simple cases—conclusively prove the absence of faults, a

suitable approximation must be used to measure the adequacy

of tests. The most common methods of measuring adequacy

involve coverage of structural elements of the software, such as

individual statements, branches of the software’s control flow,

and complex boolean conditional statements [26], [34], [35].

Each adequacy criterion embodies a set of lessons about effec-

tive testing—requirements tests must fulfill to be considered

adequate. If tests execute elements in the manner prescribed by

the criterion, than testing is deemed “adequate” with respect to

faults that manifest through such structures. Adequacy criteria

have seen widespread use in software development, and is

routinely measured as part of automated build processes [20]1.

It is easy to understand the popularity of adequacy criteria.

They offer clear checklists of testing goals that can be objec-

tively evaluated and automatically measured [36]. These very

same qualities make adequacy criteria ideal for use as auto-

mated test generation targets, as they can be straightforwardly

transformed into distance functions that guide to the search to

better solutions [4]. Search-based generation has even achieved

higher coverage than developer-created tests [13].

III. STUDY

To generate tests that are effective at finding faults, we

must identify criteria and corresponding fitness functions that

increase the probability of fault detection. As we cannot

know what faults exist before verification, such criteria are

approximations—intended to increase the probability of fault

detection, but offering no guarantees. Thus, it is important to

turn a critical eye toward the choice of fitness function used

in search-based test generation. We wish to know whether

commonly-used fitness functions produce effective tests, and

if so, why—and under what circumstances—do they do so?

More empirical evidence is needed to better understand the

relationships between adequacy criteria, fitness functions and

fault detection [20]. Many criteria exist, and there is little

guidance on when to use one over another [16]. To better

1For example, see https://codecov.io/.

understand the real-world effectiveness, use, and applicability

of common fitness functions and the factors leading to a higher

probability of fault detection, we have assessed the EvoSuite

test generation framework and eight of its fitness functions (as

well as the default multi-objective configuration) against 353

real faults, contained in the Defects4J database. In doing so,

we wish to address the following research questions:

1) Are generated test suites able to detect real faults?

2) Which fitness functions have the highest likelihood of

fault detection?

3) Does an increased search budget improve the effective-

ness of the resulting test suites?

These three questions allow us to establish a basic under-

standing of the effectiveness of each fitness function—are any

of the functions able to generate fault-detecting tests and, if

so, are any of these functions more effective than others at

the task? However, these questions presuppose that only one

fitness function can be used to generate test suites. Many

search-based generation algorithms can simultaneously target

multiple fitness functions. Therefore, we also ask:

4) Are there situations where a combination of criteria

could outperform a single criterion?

5) Does EvoSuite’s default configuration—a combination

of eight criteria—outperform any single criterion?

Finally, across all criteria, we also would like to answer:

6) What factors correlate with a high likelihood of fault

detection?

We have performed the following experiment:

1) Collected Case Examples: We have used 353 real

faults, from five Java projects, as test generation targets

(Section III-A).

2) Generated Test Cases: For each fault, we generated

10 suites per criterion, as well as EvoSuite’s default

configuration, using the fixed version of each CUT. We

performed with both a two-minute and a ten-minute

search budget per CUT (Section III-B).

3) Removed Non-Compiling and Flaky Tests: Any tests

that do not compile, or that return inconsistent results,

are automatically removed (Section III-B).

4) Assessed Fault-finding Effectiveness: For each fault,

we measure the proportion of test suites that detect the

fault to the number generated (Section III-C).

5) Recorded Generation Statistics: For each suite, fault,

and budget, we measure factors that may influence

suite effectiveness, related to coverage, suite size, and

obligation satisfaction (Section III-C).

A. Case Examples

Defects4J is an extensible database of real faults extracted

from Java projects [25]2. Currently, it consists of 357 faults

from five projects: JFreeChart (26 faults), Closure compiler

(133 faults), Apache Commons Lang (65 faults), Apache

Commons Math (106 faults), and JodaTime (27 faults). Four

2Available from http://defects4j.org

faults from the Math project were omitted due to complications

encountered during suite generation, leaving 353 that we used

in our study.

Each fault is required to meet three properties. First, a pair

of code versions must exist that differ only by the minimum

changes required to address the fault. The “fixed” version

must be explicitly labeled as a fix to an issue, and changes

imposed by the fix must be to source code, not to other project

artifacts such as the build system. Second, the fault must be

reproducible—at least one test must pass on the fixed version

and fail on the faulty version. Third, the fix must be isolated

from unrelated code changes such as refactorings. For each

fault, Defects4J provides access to the faulty and fixed versions

of the code, developer-written test cases that expose the faults,

and a list of classes and lines of code modified by the patch

that fixes the fault.

B. Test Suite Generation

The EvoSuite framework uses a genetic algorithm to evolve

test suites over a series of generations, forming a new pop-

ulation by retaining, mutating, and combining the strongest

solutions. It is actively maintained and has been successfully

applied to a variety of projects [38]. In this study, we used

EvoSuite version 1.0.3, and the following fitness functions:

Branch Coverage (BC): A test suite satisfies branch coverage

if all control-flow branches are taken by at least one test

case—the test suite contains at least one test whose execution

evaluates the branch predicate to true, and at least one whose

execution evaluates the predicate to false. To guide the

search, the fitness function calculates the branch distance from

the point where the execution path diverged from the targeted

branch. If an undesired branch is taken, the function describes

how “close” the targeted predicate is to being true, using a

cost function based on the predicate formula [4].

Direct Branch Coverage (DBC): Branch coverage may be

attained by calling a method directly, or indirectly—calling a

method within another method. When a test covers a branch

indirectly, it can be more difficult to understand how coverage

was attained. Direct branch coverage requires each branch to

be covered through a direct method call.

Line Coverage (LC): A test suite satisfies line coverage if

it executes each non-comment source code line at least once.

To cover each line of source code, EvoSuite tries to ensure

that each basic code block is reached. The branch distance is

computed for each branch that is a control dependency of any

of the statements in the CUT. For each conditional statement

that is a control dependency for some other line in the code,

EvoSuite requires that the branch of the statement leading to

the dependent code is executed.

Exception Coverage (EC): The goal of exception coverage is

to build test suites that force the CUT to throw exceptions—

either declared or undeclared. As the number of possible

exceptions that a class can throw cannot be known ahead

of time, the fitness function rewards suites that throw more

exceptions. As this function is based on the number of

Method Budget
Total

Obligations

% Obligations

Satisfied

Suite

Size

Suite

Length

Tests

Removed

% LC

(Fixed)

% LC

(Faulty)

% BC

(Fixed)

% BC

(Faulty)

% Patch

Coverage

Default
120

1834.43
50.50% 44.06 360.03 0.25 50.61% 49.82% 41.00% 40.00% 45.51%

600 57.59% 58.50 563.74 0.47 55.41% 53.85% 47.00% 46.00% 49.94%

Branch Coverage

(BC)

120
327.91

54.28% 36.35 225.33 0.32 56.44% 55.78% 48.00% 47.00% 50.31%

600 61.58% 43.71 305.13 0.46 61.16% 60.30% 54.00% 53.00% 54.04%

Direct Branch

(DBC)

120
327.91

49.97% 37.31 244.36 0.26 52.29% 51.80% 44.00% 43.00% 45.96%

600 57.66% 47.10 347.13 0.43 56.11% 55.11% 49.00% 48.00% 50.02%

Exception

Coverage (EC)

120
11.08

99.48% 11.03 28.18 0.07 20.89% 20.91% 11.00% 11.00% 16.41%

600 99.40% 11.04 28.34 0.07 21.10% 21.08% 11.00% 11.00% 16.92%

Line Coverage

(LC)

120
340.56

58.28% 30.64 186.78 0.25 56.91% 56.37% 44.00% 43.00% 50.25%

600 63.75% 34.15 232.10 0.31 61.27% 60.12% 49.00% 48.00% 53.59%

Method Coverage

(MC)

120
31.12

79.56% 21.82 72.33 0.06 36.09% 36.33% 21.00% 21.00% 29.39%

600 84.48% 24.52 87.06 0.07 37.62% 37.81% 22.00% 22.00% 30.87%

Method, No

Exception (MNEC)

120
31.12

77.96% 21.60 71.61 0.07 37.33% 37.41% 22.00% 22.00% 31.18%

600 83.35% 24.00 89.32 0.07 39.29% 39.32% 23.00% 23.00% 32.89%

Output Coverage

(OC)

120
205.71

46.66% 31.02 153.89 0.17 37.55% 37.15% 27.00% 27.00% 34.21%

600 51.98% 36.86 197.23 0.20 39.85% 39.49% 29.00% 28.00% 36.18%

Weak Mutation

(WMC)

120
560.04

52.57% 28.42 198.53 0.15 51.02% 50.76% 41.00% 41.00% 45.68%

600 59.30% 35.32 300.84 0.27 56.25% 55.59% 48.00% 47.00% 50.93%

TABLE I
STATISTICS ON GENERATED TEST SUITES. VALUES ARE AVERAGED OVER ALL 353 FAULTS. LC=LINE COVERAGE, BC=BRANCH COVERAGE AS

MEASURED BY COBERTURA. PATCH COVERAGE IS LINE COVERAGE OVER THE LINES ALTERED BY THE PATCH THAT FIXES THE FAULT.

discovered exceptions, the number of “test obligations” may

change each time EvoSuite is executed on a CUT.

Method Coverage (MC): Method Coverage simply requires

that all methods in the CUT are executed at least once,

through direct or indirect calls. The fitness function for method

coverage is discrete, as a method is either called or not called.

Method Coverage (Top-Level, No Exception) (MNEC):

Generated test suites sometimes achieve high levels of method

coverage by calling methods in an invalid state or with invalid

parameters. MNEC requires that all methods be called directly

and terminate without throwing an exception.

Output Coverage (OC): Output coverage rewards diversity

in the method output by mapping return types to a list of

abstract values [2]. A test suite satisfies output coverage if,

for each public method in the CUT, at least one test yields a

concrete return value characterized by each abstract value. For

numeric data types, distance functions offer feedback using the

difference between the chosen value and target abstract values.

Weak Mutation Coverage (WMC): Test effectiveness is

often judged using mutants [24]. Suites that detect more

mutants may be effective at detecting real faults as well.

A test suite satisfies weak mutation coverage if, for each

mutated statement, at least one test detects the mutation.

The search is guided by the infection distance, a variant

of branch distance tuned towards reaching and discovering

mutated statements [12].

Rojas et al. provide a primer on each of these fit-

ness functions [37]. We have also used EvoSuite’s default

configuration—a combination of all of the above methods—

to generate test suites. Test suites are generated that target the

classes reported as relevant to the fault by Defects4J. Tests are

generated from the fixed version of the CUT and applied to

the faulty version in order to eliminate the oracle problem. In

practice, this translates to a regression testing scenario, where

tests guard against future issues.

Two search budgets were used—two minutes and ten min-

utes per class. This allows us to examine whether an increased

search budget benefits each fitness function. To control ex-

periment cost, we deactivated assertion filtering—all possible

regression assertions are included. All other settings were kept

at their default values. As results may vary, we performed 10

trials for each fault and search budget. This resulted in the

generation of 63,540 test suites (two budgets, ten trials, nine

configurations, 353 faults).

Generation tools may generate flaky (unstable) tests [38].

For example, a test case that makes assertions about the sys-

tem time will only pass during generation. We automatically

remove flaky tests. First, all non-compiling test suites are

removed. Then, each remaining test suite is executed on the

fixed version five times. If the test results are inconsistent, the

test case is removed. This process is repeated until all tests

pass five times in a row. On average, less than one percent of

the tests are removed from each suite (see Table I).

C. Data Collection

To evaluate the fault-finding effectiveness of the generated

test suites, we execute each test suite against the faulty version

of each CUT. The effectiveness of each fitness function, for

each fault, is the proportion of suites that successfully detect

the fault to the total number of suites generated for that fault.

To better understand the factors that influence effectiveness,

we collected the following for each test suite:

Number of Test Obligations: Given a CUT, each fitness

function will calculate a series of test obligations—goals—to

cover. The number of obligations is informative of the diffi-

culty of the generation, and impacts the size and formulation

of tests [15].

Percentage of Obligations Satisfied: This factor indicates

the ability of a fitness function to cover its goals. A suite that

covers 10% of its goals is likely to be less effective than one

that achieves 100% coverage.

Test Suite Size: We have recorded the number of tests in

each test suite. Larger suites are often thought to be more

effective [17], [23]. Even if two suites achieve the same

coverage, the larger may be more effective simply because

it exercises more combinations of input.

Test Suite Length: Each test consists of one or more method

calls. Even if two suites have the same number of tests, one

Budget Chart Closure Lang Math Time Total

Default
120 15 17 29 48 14 123

600 17 20 35 57 14 143

Total 18 22 36 59 16 151

BC
120 17 16 36 53 16 138

600 20 19 35 54 17 145

Total 21 21 41 57 18 158

DBC
120 14 16 32 48 15 125

600 19 19 36 47 18 139

Total 19 22 40 52 18 151

EC
120 8 7 12 13 6 46

600 10 5 13 12 5 45

Total 10 8 15 15 6 54

LC
120 15 12 31 50 15 123

600 18 14 32 52 14 130

Total 18 17 37 55 15 142

MC
120 10 6 9 25 5 55

600 10 10 11 24 5 45

Total 12 10 14 27 6 69

MNEC
120 9 8 10 29 5 61

600 11 6 13 27 3 60

Total 11 9 13 32 6 71

OC
120 9 7 13 36 5 70

600 13 9 17 33 6 78

Total 13 12 18 38 9 89

WMC
120 13 15 31 42 14 115

600 18 19 32 48 14 131

total 18 22 37 51 16 143

Any 120 18 23 44 61 16 162

criterion 600 23 31 34 63 18 180

Total 23 32 46 64 18 183

TABLE II
NUMBER OF FAULTS DETECTED BY EACH FITNESS FUNCTION. TOTALS

ARE OUT OF 26 FAULTS (CHART), 133 (CLOSURE), 65 (LANG), 102
(MATH), 27 (TIME), AND 353 (OVERALL).

may have much longer tests—making more method calls. In

assessing the effect of suite size, we must also consider the

length of each test case.

Number of Tests Removed: Any tests that do not compile,

or that return inconsistent results, are automatically removed.

We track the number removed from each suite.

Code Coverage: As the premise of many adequacy criteria is

that faults are more likely to be detected if structural elements

of the code are thoroughly executed, the resulting coverage of

the code may indicate the effectiveness of a test suite. Using

the Cobertura tool3, we have measured the line and branch

coverage achieved by each suite over both the faulty and fixed

versions of each CUT.

Patch Coverage: A high level of coverage does not necessar-

ily indicate that the lines relevant to the fault are covered.

We also record line coverage over the program statements

modified by the patch that fixes the fault—the lines of code

that differ between the faulty and fixed version.

Table I records, for each fitness function and budget, the

average values attained for each of these measurements over

all faults. Note that the number of test obligations is dependent

on the CUT, and does not differ between budgets.

IV. RESULTS & DISCUSSION

In Table II, we list the number of faults detected by each

fitness function, broken down by system and search budget.

We also list the number of faults detected by any criterion. Due

to the stochastic search, a higher budget does not guarantee

detection of the same faults found under a lower search budget.

3Available from http://cobertura.github.io/cobertura/

Function Number of Faults

Default 3

BC 6

DBC 3

EC 2

LC 0

MC 1

MNEC 1

OC 1

WC 3

TABLE III
NUMBER OF FAULTS UNIQUELY DETECTED BY EACH FITNESS FUNCTION.

Therefore, we also list the total number of faults detected by

each fitness function.

The criteria are capable of detecting 183 (51.84%) of

the 353 studied faults.

While there is clearly room for improvement, these results

are encouraging. Generated tests are able to detect a variety

of complex, real-world faults. In the following subsections,

we will assess the results of our study with respect to each

research question. In Section IV-A, we compare the capabil-

ities of each fitness function. In Section IV-B, we explore

combinations of criteria. Finally, in Section IV-C, we explore

the factors that indicate effectiveness.

A. Comparing Fitness Functions

From Table II, we can see that suites differ in effectiveness

between criteria. Overall, branch coverage produces the best

suites, detecting 158 faults. Branch is closely followed by

direct branch (151 faults), weak mutation (143), and line

coverage (142). These four fitness functions are trailed by

the other four, with exception coverage showing the weakest

results (54 faults). These rankings do not differ much on a per-

system basis. At times, ranks may shift—for example, direct

branch coverage occasionally outperforms branch coverage—

but we can see two clusters among the fitness functions. The

first cluster contains branch, direct branch, line, and weak

mutation coverage—with branch and direct branch leading the

other two. The second cluster contains exception, method,

method (no-exception), and output coverage—with output

coverage producing the best results and exception coverage

producing the worst.

Table III depicts the number of faults uniquely detected by

each fitness function. A total of twenty faults can only be

detected by a single criterion. Branch coverage is again the

most effective in this regard, uniquely detecting six faults.

Direct branch coverage and weak mutation also perform well,

each detecting three faults that no other criterion can detect.

Due to the stochastic nature of the search, one suite gen-

erated by EvoSuite may not always detect a fault detected by

another suite—even if the same criterion is used. To more

clearly understand the effectiveness of each fitness function,

we must not track only whether a fault was detected, but the

likelihood of detection. To do so, we record the proportion

of detecting suites to the total number of suites generated for

Budget Chart Closure Lang Math Time Total

Default
120 47.31% 4.51% 23.85% 25.78% 25.93% 19.01%
600 48.08% 7.07% 32.66% 32.84% 33.33% 24.25%

% Change 1.62% 56.67% 36.77% 27.38% 28.57% 27.57%

BC
120 45.00% 4.66% 34.00% 27.94% 34.82% 22.07%
600 48.46% 5.79% 40.15% 32.75% 39.26% 25.61%

% Change 7.69% 24.19% 18.10% 17.19% 12.77% 16.05%

DBC
120 34.23% 5.11% 30.00% 24.51% 31.11% 19.43%
600 40.77% 6.09% 38.77% 28.63% 40.37% 23.80%

% Change 19.10% 19.12% 29.23% 16.80% 29.76% 22.45%

EC
120 22.31% 1.35% 7.54% 6.37% 9.26% 6.09%
600 21.54% 0.98% 9.23% 7.06% 9.63% 6.43%

% Change -3.45% -27.78% 22.45% 10.77% 4.00% 5.58%

LC
120 38.85% 4.14% 31.23% 25.78% 30.00% 19.92%
600 46.15% 4.81% 34.31% 29.22% 36.67% 22.78%

% Change 18.81% 16.36% 9.85% 13.31% 22.22% 14.37%

MC
120 30.77% 1.58% 7.54% 10.98% 8.15% 8.05%
600 30.77% 2.26% 7.69% 10.88% 8.15% 8.30%

% Change 0.00% 42.86% 2.04% -0.89% 0.00% 3.17%

MNEC
120 23.46% 2.18% 6.62% 12.16% 6.67% 7.79%
600 30.77% 1.88% 7.54% 12.06% 5.19% 8.24%

% Change 31.15% -13.79% 13.95% -0.81% -22.22% 5.82%

OC
120 21.15% 2.03% 7.85% 16.57% 9.63% 9.29%
600 23.85% 2.56% 10.92% 16.76% 12.22% 10.51%

% Change 12.73% 25.93% 39.22% 1.18% 26.92% 13.11%

WMC
120 38.08% 4.44% 24.15% 23.04% 25.19% 17.51%
600 46.15% 5.56% 32.15% 27.45% 27.04% 21.42%

% Change 21.21% 25.42% 33.12% 19.15% 7.35% 22.33%

TABLE IV
AVERAGE LIKELIHOOD OF FAULT DETECTION, BROKEN DOWN BY FITNESS

FUNCTION, BUDGET, AND SYSTEM.

that fault. The average likelihood of fault detection is listed

for each criterion, by system and budget, in Table IV.

We largely observe the same trends as above. Branch

coverage has the highest overall likelihood of fault detec-

tion, with 22.07% of suites detecting faults given a two-

minute search budget and 25.61% of suites detecting faults

given a ten-minute budget. Line and direct branch coverage

follow with a 19.92-22.78% and 19.43-23.80% success rate,

respectively. While the effectiveness of each criterion varies

between system—direct branch outperforms all other criteria

for Closure, for example—the two clusters noted above remain

intact. Branch, line, direct branch, and weak mutation coverage

all perform well, with the edge generally going to branch cov-

erage. On the lower side of the scale, output, method, method

(no exception), and exception coverage perform similarly, with

a slight edge to output coverage.

Branch coverage is the most effective criterion,

detecting 158 faults—six of which were only detected

by this criterion. Branch coverage suites have, on

average, a 22.07-25.61% likelihood of fault detection.

From Table IV, we can see that almost all criteria benefit

from an increased search budget. Direct branch coverage and

weak mutation benefit the most, with average improvements of

22.45% and 22.33% in effectiveness. In general, all distance-

driven criteria—branch, direct branch, line, weak mutation,

and, partially, output coverage—improve given more time.

Discrete fitness functions benefit less from the budget increase.

Distance-based functions benefit from increased budget,

particularly direct branch and weak mutation.

We can perform statistical analysis to assess our observa-

Default BC DBC LC WM

Default - 0.89 0.55 0.54 0.25

BC 0.11 - 0.13 0.13 0.03

DBC 0.45 0.87 - 0.50 0.22

LC 0.46 0.87 0.50 - 0.22

WC 0.75 0.97 0.78 0.78 -

TABLE V
P-VALUES FOR MANN-WHITNEY-WILCOXON COMPARISONS OF

“TOP-CLUSTER” CRITERIA (TWO-MINUTE SEARCH BUDGET).

tions. For each pair of criteria, we formulate hypothesis H

and its null hypothesis, H0:

• H: Given a fixed search budget, test suites generated

using criterion A will have a higher likelihood of fault

detection than suites generated using criterion B.

• H0: Observations of fault detection likelihood for both

criteria are drawn from the same distribution.

Our observations are drawn from an unknown distribution;

therefore, we cannot fit our data to a theoretical probability

distribution. To evaluate H0 without any assumptions on dis-

tribution, we use a one-sided (strictly greater) Mann-Whitney-

Wilcoxon rank-sum test [40], a non-parametric hypothesis test

for determining if one set of observations is drawn from a

different distribution than another set of observations. Due

to the limited number of faults for the Chart and Time

systems, we have analyzed results across the combination

of all systems. We apply the test for each pairing of fitness

function and search budget with α = 0.05.

The tests further validate the “two clusters” observation.

For the four criteria in the top cluster—branch, direct branch,

line, and weak mutation coverage—we can always reject the

null hypothesis with regard to the remaining four criteria in

the bottom cluster. Within each cluster, we generally cannot

reject the null hypothesis. P-values within the top cluster,

when a two-minute search budget is used, are shown in

Table V. We can use these results to infer a partial ordering—

Branch coverage outperforms weak mutation coverage with

significance. While there were no other cases where H0 can be

rejected, p-values are much lower for branch coverage against

the other criteria than in any other pairing4. This suggests

a slight advantage in using branch coverage, consistent with

previous results. Similarly, in the lower cluster, we can reject

H01 for output coverage against exception coverage (two-

minute budget) and against exception, method, and method

(no exception) with a ten-minute budget. We cannot reject

H0 in the other comparisons.

Branch coverage outperforms, with statistical

significance, weak mutation (2m budget), and method,

MNEC, output, and exception coverage (both budgets).

B. Combinations of Fitness Functions

The analysis above presupposes that only one fitness func-

tion can be used to generate test suites. However, many

search-based generation algorithms can simultaneously target

4P-values for a ten-minute budget are omitted due to space constraints, but
suggest similar conclusions.

 0

 5

 10

 15

 20

Default EC DBC BC

16.15

12.31

10.00

6.92

(a) Chart (2m)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Default WMC BC DBC

2.20

1.40 1.30
1.10

(b) Closure (2m)

 0

 1

 2

 3

 4

 5

 6

 7

Default LC DBC WMC MC BC

4.50 4.30 4.30 4.00
3.50 3.30

(c) Lang (2m)

 0

 2

 4

 6

 8

 10

 12

Default OC LC WMC BC

7.43 7.00 6.86
6.00 5.43

(d) Math (2m)

 0

 2

 4

 6

 8

 10

Default DBC BC

8.20
7.10

6.50

(e) Time (2m)

 0

 5

 10

 15

 20

Default WMC MC BC

16.67

14.17

10.83 10.00

(f) Chart (10m)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Default WMC BC DBC

3.20

2.40

1.50 1.40

(g) Closure (10m)

 0

 1

 2

 3

 4

 5

 6

 7

Default WMC DBC EC BC

6.50

5.10 4.90

4.10

3.00

(h) Lang (10m)

 0

 2

 4

 6

 8

 10

 12

Default WMC LC BC

11.25

6.72
5.47

4.84

(i) Math (10m)

 0

 2

 4

 6

 8

 10

BC LC WMC OC DBC

9.40

8.10
7.50

6.30 6.30

(j) Time (10m)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Default DBC WMC LC BC

5.00

3.90 3.50 3.30 3.30

(k) Overall (2m)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Default WMC DBC LC BC

7.30

4.60 4.20
3.40 3.30

(l) Overall (10m)

Fig. 1. Average % likelihood of fault detection for fitness functions once data is filtered for faults where the most effective function for that system has
< 30% chance of detection.

multiple fitness functions. EvoSuite’s default configuration,

in fact, attempts to satisfy all eight of the fitness functions

examined in this study [37]. In theory, suites generated through

a combination of fitness functions could be more effective

than suites generated through any one objective. For example,

combining exception and branch coverage may result in a suite

that both thoroughly explores the structure of the system (due

to the branch obligations) and rewards tests that throw a larger

number of exceptions. Such a suite may be more effective than

a suite generated using branch or exception coverage alone. To

better understand the potential of combined criteria, we answer

two questions. First, are there situations where the most effec-

tive criterion is outperformed by another, secondary, criterion?

Second, does EvoSuite’s default combination outperform the

individual criteria?

From Table III, we can see that there are a total of twenty

faults only detected by a single configuration. Thus, it is clear

that no one fitness function can detect all faults. Almost all

criteria—regardless of their overall effectiveness—can detect

something the others cannot. This does not automatically mean

that combinations of criteria can detect these faults either—

the default configuration does not detect the 17 faults detected

by the other individual criteria. It does, however, detect three

faults not found otherwise. Still, combinations of criteria,

either explored over multiple, independent generations—each

for a single criterion—or through a single multi-objective

generation, may be able to detect faults missed by a single

criterion.

To further understand the situations where combinations of

criteria may be useful, we filter the set of faults for those

that the top-scoring criterion is ineffective at detecting. In

Figure 1, we have taken the faults for each system, isolated

any where the “best” criterion for that system (generally

branch coverage, see Table IV) has < 30% likelihood of

detection, and calculated the likelihood of fault detection for

each criterion for that subset of the faults. In each subplot, we

display the likelihood of fault detection for any criterion that

outperforms the best from the full set.

From these plots, we can see that there are always 2-5

criterion that are more effective in these situations. The exact

criteria depend strongly on the system, and likely, on the

types of faults examined. Interestingly, despite the similarity

in distance functions and testing intent, direct branch and line

coverage are often more effective than branch coverage in

situations where it has a low chance of detection. In these

cases, the criteria drive tests to interact in such a way with

the CUT that they are better able to detect the fault. Despite

its poor overall performance, exception coverage also often

does well in these situations—demonstrating the wisdom of

favoring suites that throw more exceptions.

These results imply that a combination of criteria could

outperform a single criterion. Indeed, from Figure 1, we can

see that EvoSuite’s default configuration outperforms all other

criteria for the examined subsets of faults. In situations where

the single “best” criterion performs poorly, a multi-objective

solution achieves improved results.

In situations where the criterion that is the most

effective overall has < 30% likelihood of fault

detection, other criteria and combinations of criteria

more effectively detect the fault. The effective secondary

criteria vary by system.

Overall, EvoSuite’s default configuration performs well, but

fails to outperform all individual criteria. Table II shows that

the default configuration detects 151 faults—fewer than branch

coverage, but a tie with direct branch coverage. As previously

mentioned, it also uniquely detects three faults (see Table III).

Again, this is fewer than branch coverage, but tied with direct

branch and weak mutation coverage. According to Table IV,

the default configuration’s average overall likelihood of fault

detection is 19.01% (2m budget)-24.25% (10m budget). At the

two-minute level, this places it below branch, line, and direct

branch coverage. At the ten-minute level, it falls below branch

coverage, but above all other criteria. This places the default

configuration in the top cluster—an observation confirmed by

further statistical tests.

In theory, a combination of criteria could detect more faults

than any single criterion. In practice, combining all criteria

results in suites that are quite effective, but fail to reliably

outperform individual criterion. From Table IV, we can see

that the performance of the default configuration also varies

quite a bit between systems, and by search budget. For Chart

and Math, the default configuration performs almost as well

as branch coverage. With a higher budget, it performs as well

or better than Branch for Math and Closure. However, for

the Lang and Time systems, the default configuration is less

effective than branch, line, and direct branch coverage even

with a larger budget.

The major reason for the less reliable performance of this

configuration is the difficulty in attempting to satisfy so many

obligations at once. As noted in Table I, the default configura-

tion must attempt to satisfy, on average, 1,834 obligations. The

individual criteria only need to satisfy a fraction of that total.

As a result, the default configuration also benefits more than

any individual criterion from an increased search budget—a

27.57% improvement in efficacy.

EvoSuite’s default configuration has an average

19.01-24.25% likelihood of fault detection—in the top

cluster, but failing to outperform all individual criteria.

Our observations imply that combinations of criteria could

be more effective than individual criteria. However, a combi-

nation of all eight criteria results in unstable performance—

especially if search budget is limited. Instead, testers may

wish to identify a smaller subset of criteria to combine during

test generation. More research is needed to understand which

combinations are most effective, and whether system-specific

combinations may yield further improvements.

C. Understanding the Factors Leading to Fault Detection

As discussed in Section III-C—to better understand

the combination of factors correlating with effective fault

detection—we have collected the following statistics for each

generated test suite: the number of obligations, the percent

satisfied, suite size, suite length, number of tests removed,

branch (BC) and line coverage (LC) over the fixed and faulty

versions of the CUT, and coverage of the lines changed to fix

the fault (patch coverage, or PC).

 0

 20

 40

 60

 80

 100

< 30% 30-49% 50-79% 80-100%

P
e
rc

e
n

t
o

f
D

a
ta

s
e
t

Likeihood of Fault Detection

82.00

4.00 4.00 9.00

(a) 2m Budget

 0

 20

 40

 60

 80

 100

< 30% 30-49% 50-79% 80-100%

P
e
rc

e
n

t
o

f
D

a
ta

s
e
t

Likeihood of Fault Detection

79.00

4.00 5.00
12.00

(b) 10m Budget

Fig. 2. Baseline class distribution of the dataset used for treatment learning.
Likelihood of fault detection is discretized into four classes—our target is the
80-100% class.

This collection of factors forms a dataset in which, for

each fault, we have recorded the average of each statistic

for the suites generated to detect that fault. We can then use

the likelihood of fault detection (D) as the class variable—

discretized into four values: D < 30%, 30 ≤ D < 50,

50 ≤ D < 80, D ≥ 80. We have created two datasets, dividing

data by search budget. The class distribution of each dataset

is shown in Figure 2.

A standard practice in machine learning is to classify data—

to use previous experience to categorize new observations [31].

We are instead interested in the reverse scenario. Rather than

attempting to categorize new data, we want to work backwards

from classifications to discover which factors correspond most

strongly to a class of interest—a process known as treatment

learning [29]. Treatment learning approaches take the classifi-

cation of an observation and reverse engineer the evidence that

led to that categorization. Such learners produce a treatment—

a small set of attributes and value ranges that, if imposed, will

identify a subset of the original data matching skewed towards

the target classification. In this case, a treatment notes the

factors—and their values—that contribute to a high likelihood

of fault detection. Using the TAR3 treatment learner [14],

we have generated five treatments from each dataset. The

treatments are scored according to their impact on class

distribution, and top-scoring treatments are presented first. We

extracted the following treatments:

Two-Minute Dataset:

1) BC (fixed) > 67.70%, PC > 66.67%

2) LC (fixed) > 82.19%, PC > 66.67%, BC (fixed) > 67.70%

3) PC > 66.67%, LC (fixed) > 82.19%

4) 69.40 ≥ Length ≤ 169.80, BC (fixed) > 67.70%

5) BC (fixed) > 67.70%, % of obligations satisfied > 86.38%

Ten-Minute Dataset:

1) BC (fixed) > 76.08%, PC > 70.00%

2) PC > 70.00%, LC (fixed) > 85.92%

3) BC (fixed) > 76.08%, % of obligations satisfied > 93.30%

4) BC (fixed) > 76.08%, LC (fixed) > 85.92%,% of obligations satisfied

> 93.30%

5) PC > 70.00%, LC (fixed) > 85.92%, BC (fixed) > 76.08%

In Figure 3(a), we plot the class distribution of the subset fit-

ting the highest-ranked treatment learned from the two-minute

dataset. In Figure 4, we do the same for the top treatment

from the ten-minute dataset. Comparing the plots in Figure 2

to the subsets in Figures 3-4, we can see that the treatments

 0

 20

 40

 60

 80

 100

< 30% 30-49% 50-79% 80-100%

P
e
rc

e
n

t
o

f
D

a
ta

s
e
t

Likeihood of Fault Detection

46.00

11.00 14.00

28.00

(a) Class Distribution

 0

 20

 40

 60

 80

 100

 120

 140

 160

Default BC DBC EC LC MC MNEC OC WMC

#
 o

f
C

a
s

e
s

 F
it

ti
n

g
 t

h
e

 T
re

a
tm

e
n

t

89.00

124.00

103.00

0.00

109.00

1.00 2.00

18.00

89.00

(b) # of Cases Fitting the Treatment (2m)

 0

 20

 40

 60

 80

 100

 120

 140

 160

Default BC DBC EC LC MC MNEC OC WMC

#
 o

f
C

a
s

e
s

 F
it

ti
n

g
 t

h
e

 T
re

a
tm

e
n

t

119.00

140.00

119.00

0.00

134.00

1.00 2.00

17.00

112.00

(c) # of Cases Fitting the Treatment (10m)

Fig. 3. For the top treatment learned from the 2m dataset: Class distribution of the data subset fitting the treatment, the number of cases that fit the treatment
for each fitness function from the 2m dataset, and the number of cases that fit the treatment for each fitness function from the 10m dataset.

 0

 20

 40

 60

 80

 100

< 30% 30-49% 50-79% 80-100%

P
e
rc

e
n

t
o

f
D

a
ta

s
e
t

Likeihood of Fault Detection

39.00

11.00 13.00

37.00

(a) Class Distribution

 0

 20

 40

 60

 80

 100

 120

 140

 160

Default BC DBC EC LC MC MNEC OC WMC

#
 o

f
C

a
s

e
s

 F
it

ti
n

g
 t

h
e

 T
re

a
tm

e
n

t

67.00

102.00

89.00

0.00

72.00

1.00 2.00
9.00

65.00

(b) # of Cases Fitting the Treatment (2m)

 0

 20

 40

 60

 80

 100

 120

 140

 160

Default BC DBC EC LC MC MNEC OC WMC

#
 o

f
C

a
s

e
s

 F
it

ti
n

g
 t

h
e

 T
re

a
tm

e
n

t

99.00

127.00

110.00

0.00

101.00

1.00 2.00
11.00

84.00

(c) # of Cases Fitting the Treatment (10m)

Fig. 4. For the top treatment learned from the 10m dataset: Class distribution of the data subset fitting the treatment, the number of cases that fit the treatment
for each fitness function from the 2m dataset, and the number of cases that fit the treatment for each fitness function from the 10m dataset.

do impose a large change in the class distribution—a lower

percentage of cases have the < 30% classification, and more

have the other classifications, particularly 80 − 100%. This

shows that the treatments do reasonably well in predicting for

success. Test suites fitting these treatments are not guaranteed

to be successful, but are more likely to be.

We can make several observations. First, the most common

factors selected as indicative of efficacy are all coverage-

related factors. For both datasets, the top-ranked treatment

specifically indicates that branch coverage over the fixed

version of the CUT and patch coverage are the most important

factors in determining suite efficacy. Even if their goal is not

to attain coverage, successful suites thoroughly explore the

structure of the CUT. The fact that coverage is important is

not, in itself, entirely surprising—if patched code is not well

covered, the fault is unlikely to be discovered.

More surprising is how much weight is given to coverage.

Coverage is recommended by all of the selected treatments—

generally over the fixed version of the CUT. While patch

coverage is important, overall branch and line coverage over

the faulty version is less important than coverage over the fixed

version. It seems to be important that the suite thoroughly

explore the program it is generated on, and that it still covers

lines patched in the faulty version.

Suite size has been a focus in recent work, with Inozemt-

seva et al. (and others) finding that the size has a stronger

correlation to efficacy than coverage level [23]. However,

a size attribute (suite length) only appears in one of the

treatments produced for either dataset. This seems to indicate

that, unlike with mutants, larger test suites are not necessarily

more effective at detecting real faults.

The other factor noted as indicative of efficacy is the percent

of obligations satisfied. For coverage-based fitness functions

like branch and line coverage, a high level of satisfied obli-

gations likely correlates with a high level of branch or line

coverage. For other fitness functions, the correlation may not

be as strong, but it is likely that suites satisfying more of their

obligations also explore more of the structure of the CUT.

Factors that strongly indicate efficacy include a high

level of branch coverage over the fixed CUT and patch

coverage. Coverage is favored over factors related to

suite size or test obligations.

We have recorded how effective each fitness function is at

producing suites that meet the conditions indicated by the top-

ranked treatments learned from each dataset in Figures 3(b)

and (c) and 4(b) and (c). From these plots, we can immediately

see that the top cluster of fitness functions met those conditions

for a large number of faults. The bottom cluster, on the other

hand, rarely meets those conditions.

Note, however, that we still do not entirely understand

the factors that indicate a high probability of fault detection.

From Figures 3-4, we can see that the treatments radically

alter the class distribution from the baseline in Figure 2.

Still, from Figure 4, we can see that suites fitting the top-

ranked treatments are ineffective as often as they are highly

effective. From this, we can conclude that factors predicted by

treatments are a necessary precondition for a high likelihood

of fault detection, but are not sufficient to ensure that faults

are detected. Unless code is executed, faults are unlikely

to be found. However, how code is executed matters, and

execution alone does not guarantee that faults are triggered

and observed as failures. The fitness function determines how

code is executed. It may be that fitness functions based on

stronger adequacy criteria (such as complex condition-based

criteria [39]) or combinations of fitness functions will better

guide such a search. Further research is needed to better

understand how to ensure a high probability of fault detection.

While coverage increases the likelihood of fault

detection, it does not ensure that suites are effective.

V. RELATED WORK

Those who advocate the use of adequacy criteria hypothe-

size that criteria fulfillment will result in test suites more likely

to detect faults—at least with regard to the structures targeted

by that criterion. If this is the case, we should see a correlation

between higher attainment of a criterion and the chance of fault

detection for a test suite [20]. Researchers have attempted to

address whether such a correlation exists for almost as long

as such criteria have existed [33], [30], [6], [9], [10], [8],

[18], [23], [16]. Inozemtseva et al. provide a good overview

of work in this area [23]. Our focus differs—our goal is to

examine the relationship between fitness function and fault

detection efficacy for search-based test generation. However,

fitness functions are largely based on, and intended to fulfill,

adequacy criteria. Therefore, there is a close relationship

between the fitness functions that guide test generation and

adequacy criteria intended to judge the resulting test suites.

EvoSuite has previously been used to generate test suites

for the systems in the Defects4J database. Shamshiri et al.

applied EvoSuite, Randoop, and Agitar to each fault in the

Defects4J database to assess the general fault-detection ca-

pabilities of automated test generation [38]. They found that

the combination of all three tools could identify 55.7% of

the studied faults. Their work identifies several reasons why

faults were not detected, including low levels of coverage,

heavy use of private methods and variables, and issues with

simulation of the execution environment. In their work, they

only used the branch coverage fitness function when using

EvoSuite. In our study, we have expanded the number of

EvoSuite configurations to better understand the role of the

fitness function in determining suite efficacy.

VI. THREATS TO VALIDITY

External Validity: Our study has focused on a relatively small

number of systems. Nevertheless, we believe that such systems

are representative of—at minimum—other small to medium-

sized open-source Java systems. We also believe that Defects4J

offers enough fault examples that our results are generalizable

to other, sufficiently similar projects.

We have used a single test generation framework. There

are many search-based methods of generating tests and these

methods may yield different results. Unfortunately, no other

generation framework offers the same number and variety of

fitness functions. Therefore, a more thorough comparison of

tool performance cannot be made at this time.

To control experiment cost, we have only generated ten

test suites for each combination of fault, budget, and fitness

function. It is possible that larger sample sizes may yield

different results. However, this still yielded 64,360 test suites

to use in analysis. We believe that this is a sufficient number

to draw stable conclusions.

Conclusion Validity: When using statistical analyses, we

have attempted to ensure the base assumptions behind these

analyses are met. We have favored non-parametric methods,

as distribution characteristics are not generally known a priori,

and normality cannot be assumed.

VII. CONCLUSIONS

We have examined the role of the fitness function in deter-

mining the ability of search-based test generators to produce

suites that detect complex, real faults. From the eight fitness

functions and 353 faults studied, we can conclude:

• EvoSuite’s branch coverage fitness function is the most

effective—detecting more faults than any other criterion,

and having a higher likelihood of detection for each fault.

Line, direct branch, and weak mutation coverage also

perform well in both regards.

• There is evidence that multi-objective suite generation

could be more effective than single-objective generation,

and EvoSuite’s default combination of eight functions

performs relatively well. However, the difficulty of si-

multaneously balancing all eight functions decreases the

average performance of this configuration, and it fails to

outperform branch coverage.

• High levels of coverage over the fixed version of the CUT

and over patched lines of code are the factors that most

strongly predict suite effectiveness.

• While others have found that test suite size correlates

to mutant detection, we found that larger suites are not

necessarily more effective at detecting real faults.

Our findings represent a step towards understanding the use,

applicability, and combination of common fitness functions.

Our observations indicate that, while coverage seems to be a

prerequisite to effective fault detection, it is not sufficient to

ensure it. The fitness function must still execute the code in

a manner that triggers the fault, and ensures that it manifests

in a failure. We hypothesize that lightweight, perhaps system-

specific, combinations of fitness functions may be more effec-

tive than single metrics in improving the probability of fault

detection—both exploring the structure of the CUT and suffi-

ciently varying input in a manner that improves the probability

of fault detection. However, more research is needed to better

understand the factors that contribute to fault detection, and

the joint relationship between the fitness function, generation

algorithm, and CUT in determining the efficacy of test suites.

In future work, we plan to further explore these topics.

REFERENCES

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A sys-
tematic review of the application and empirical investigation of search-
based test case generation. Software Engineering, IEEE Transactions

on, 36(6):742–762, 2010.
[2] N. Alshahwan and M. Harman. Coverage and fault detection of the

output-uniqueness test selection criteria. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 181–192, New York, NY, USA, 2014. ACM.

[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn, et al. An
orchestrated survey of methodologies for automated software test case
generation. Journal of Systems and Software, 86(8):1978–2001, 2013.

[4] A. Arcuri. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and

Reliability, 23(2):119–147, 2013.
[5] L. Bianchi, M. Dorigo, L. Gambardella, and W. Gutjahr. A survey

on metaheuristics for stochastic combinatorial optimization. Natural

Computing, 8(2):239–287, 2009.
[6] X. Cai and M. R. Lyu. The effect of code coverage on fault detection

under different testing profiles. In Proceedings of the 1st International

Workshop on Advances in Model-based Testing, A-MOST ’05, pages
1–7, New York, NY, USA, 2005. ACM.

[7] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary

Computation, IEEE Transactions on, 1(1):53–66, 1997.
[8] P. G. Frankl and O. Iakounenko. Further empirical studies of test

effectiveness. In Proceedings of the 6th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, SIGSOFT
’98/FSE-6, pages 153–162, New York, NY, USA, 1998. ACM.

[9] P. G. Frankl and S. N. Weiss. An experimental comparison of the effec-
tiveness of the all-uses and all-edges adequacy criteria. In Proceedings

of the Symposium on Testing, Analysis, and Verification, TAV4, pages
154–164, New York, NY, USA, 1991. ACM.

[10] P. G. Frankl and S. N. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE Transactions

on Software Engineering, 19(8):774–787, Aug 1993.
[11] G. Fraser and A. Arcuri. Whole test suite generation. Software

Engineering, IEEE Transactions on, 39(2):276–291, Feb 2013.
[12] G. Fraser and A. Arcuri. Achieving scalable mutation-based generation

of whole test suites. Empirical Software Engineering, 20(3):783–812,
2014.

[13] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does
automated white-box test generation really help software testers? In
Proceedings of the 2013 International Symposium on Software Testing

and Analysis, ISSTA 2013, pages 291–301, New York, NY, USA, 2013.
ACM.

[14] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet. Automatically
finding the control variables for complex system behavior. Automated

Software Engineering, 17(4):439–468, Dec. 2010.
[15] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. E. Heimdahl. The

effect of program and model structure on the effectiveness of mc/dc test
adequacy coverage. ACM Trans. Softw. Eng. Methodol., 25(3):25:1–
25:34, July 2016.

[16] G. Gay, M. Staats, M. Whalen, and M. Heimdahl. The risks of coverage-
directed test case generation. Software Engineering, IEEE Transactions

on, PP(99), 2015.
[17] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and

D. Marinov. Comparing non-adequate test suites using coverage criteria.
In Proceedings of the 2013 International Symposium on Software Testing

and Analysis, ISSTA 2013, pages 302–313, New York, NY, USA, 2013.
ACM.

[18] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov. Comparing non-adequate test suites using coverage criteria.
In Proceedings of the 2013 International Symposium on Software Testing

and Analysis, ISSTA 2013, pages 302–313, New York, NY, USA, 2013.
ACM.

[19] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they
to real faults? In 2014 IEEE 25th International Symposium on Software

Reliability Engineering, pages 189–200, Nov 2014.

[20] A. Groce, M. A. Alipour, and R. Gopinath. Coverage and its discontents.
In Proceedings of the 2014 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming & Software, Onward!
2014, pages 255–268, New York, NY, USA, 2014. ACM.

[21] M. Harman and B. Jones. Search-based software engineering. Journal

of Information and Software Technology, 43:833–839, December 2001.
[22] J. H. Holland. Adaptation in natural and artificial systems: an in-

troductory analysis with applications to biology, control, and artificial

intelligence. MIT press, 1992.
[23] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated

with test suite effectiveness. In Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, pages 435–445, New
York, NY, USA, 2014. ACM.

[24] R. Just. The major mutation framework: Efficient and scalable mutation
analysis for java. In Proceedings of the 2014 International Symposium

on Software Testing and Analysis, ISSTA 2014, pages 433–436, New
York, NY, USA, 2014. ACM.

[25] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing

and Analysis, ISSTA 2014, pages 437–440, New York, NY, USA, 2014.
ACM.

[26] E. Kit and S. Finzi. Software Testing in the Real World: Improving the

Process. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1995.

[27] J. Malburg and G. Fraser. Combining search-based and constraint-
based testing. In Proceedings of the 2011 26th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’11, pages 436–
439, Washington, DC, USA, 2011. IEEE Computer Society.

[28] P. McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14:105–156, 2004.

[29] T. Menzies and Y. Hu. Data mining for very busy people. Computer,
36(11):22–29, Nov. 2003.

[30] A. Mockus, N. Nagappan, and T. Dinh-Trong. Test coverage and
post-verification defects: A multiple case study. In Empirical Software

Engineering and Measurement, 2009. ESEM 2009. 3rd International

Symposium on, pages 291–301, Oct 2009.
[31] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine

Learning. MIT Press, 2012.
[32] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley

& Sons, 2004.
[33] A. Namin and J. Andrews. The influence of size and coverage on test

suite effectiveness, 2009.
[34] W. Perry. Effective Methods for Software Testing, Third Edition. John

Wiley & Sons, Inc., New York, NY, USA, 2006.
[35] M. Pezze and M. Young. Software Test and Analysis: Process, Princi-

ples, and Techniques. John Wiley and Sons, October 2006.
[36] S. Rayadurgam and M. Heimdahl. Coverage based test-case generation

using model checkers. In Proc. of the 8th IEEE Int’l. Conf. and

Workshop on the Engineering of Computer Based Systems, pages 83–91.
IEEE Computer Society, April 2001.

[37] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining
multiple coverage criteria in search-based unit test generation. In
M. Barros and Y. Labiche, editors, Search-Based Software Engineering,
volume 9275 of Lecture Notes in Computer Science, pages 93–108.
Springer International Publishing, 2015.

[38] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges. In Proceedings of the 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE),
ASE 2015, New York, NY, USA, 2015. ACM.

[39] M. Whalen, G. Gay, D. You, M. Heimdahl, and M. Staats. Observable
modified condition/decision coverage. In Proceedings of the 2013 Int’l

Conf. on Software Engineering. ACM, May 2013.
[40] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6):pp. 80–83, 1945.

