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Abstract—The test oracle—a judge of the correctness of the system under test (SUT)—is a major component of the testing process.
Specifying test oracles is challenging for some domains, such as real-time embedded systems, where small changes in timing or
sensory input may cause large behavioral differences. Models of such systems, often built for analysis and simulation, are appealing
for reuse as test oracles. These models, however, typically represent an idealized system, abstracting away certain issues such as non-
deterministic timing behavior and sensor noise. Thus, even with the same inputs, the model’s behavior may fail to match an acceptable
behavior of the SUT, leading to many false positives reported by the test oracle.
We propose an automated steering framework that can adjust the behavior of the model to better match the behavior of the SUT to
reduce the rate of false positives. This model steering is limited by a set of constraints (defining the differences in behavior that are
acceptable) and is based on a search process attempting to minimize a dissimilarity metric. This framework allows non-deterministic,
but bounded, behavioral differences, while preventing future mismatches by guiding the oracle—within limits—to match the execution
of the SUT. Results show that steering significantly increases SUT-oracle conformance with minimal masking of real faults and, thus,
has significant potential for reducing false positives and, consequently, testing and debugging costs while improving the quality of the
testing process.
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1 INTRODUCTION

When running a suite of tests, the test oracle is the judge that
determines the correctness of the execution of a given system
under test (SUT). Over the past decades, researchers have
made remarkable improvements in automatically generating
effective test stimuli [1], but it remains difficult to build an
automated method of checking behavioral correctness. Despite
increased attention, the test oracle problem [2]—the set of
challenges related to the construction of efficient and robust
oracles—remains a major problem in many domains.

One such domain is that of real-time embedded systems—
especially those that interact with a physical domain such
as implanted medical devices. Systems in this domain are
particularly challenging since their behavior depends not only
on the values of inputs and outputs, but also on their time of
occurrence [3]. When executing the software on an embedded
hardware platform, several sources of non-determinism, such
as input processing delays, execution time fluctuation, and
hardware inaccuracy, can result in the SUT exhibiting non-
deterministic—but acceptable—behaviors.

Behavioral models [4], typically expressed as state-
transition systems, represent the system specifications by
prescribing the behavior (the system state) to be exhibited
in response to given input. Common modeling tools in this
category are Stateflow [5], Statemate [6], and Rhapsody [7].
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Models built using these tools are used for many purposes
in industrial software development, particularly during re-
quirements and specification analysis. Behavior modeling is
common for the analysis of embedded and real-time systems,
as the requirements for such systems are naturally stateful—
their outcome depends strongly on the current system mode
and a number of additional factors both internal and external
to the system. Because such models can be “executed”, a
potential solution to the need for a test oracle is to execute the
same tests against both the model and the SUT and compare
the resulting behaviors.

These models, however, provide an abstract view of the
system that typically simplifies the actual conditions in the
execution environment. For example, communication delays,
processing delays, and sensor and actuator inaccuracies may be
omitted. Therefore, on a real hardware platform, the SUT may
exhibit behavior that is acceptable with respect to the system
requirements, but differs from what the model prescribes for
a given input; the system under test is “close enough” to the
behavior described by the model. Over time, these differences
can build to the point where the execution paths of the model
and the SUT diverge enough to flag the test as a “failure,”
even if the system is still operating within the boundaries set
by the requirements. In a rigorous testing effort, this may lead
to tens of thousands of false reports of test failures that have
to be inspected and dismissed—a costly process.

We take inspiration for addressing this model-SUT mis-
match problem from program steering, the process of ad-
justing the execution of live programs in order to improve
performance, stability, or correctness [8]. We hypothesize that
behavioral models can be adapted for use as oracles for real-
time systems through the use of steering actions that override
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the current execution of the model [9], [10]. By comparing
the state of the model-based oracle (MBO) with that of the
SUT following an output event, we can guide the model to
match the state of the SUT through a search process that
seeks a steering action that transitions the model to a reachable
state that obeys a set of user-specified constraints and general
steering policies and that minimizes a dissimilarity metric. The
result of steering is a widening of the behaviors accepted by
the oracle, thus compensating for allowable non-determinism,
without unacceptably impairing the ability of the model-based
oracle to correctly judge the behavior of the SUT.

We present an automated framework for oracle steering,
expanding on previous research [10], [11]. In this manuscript,
we present an updated steering framework, discuss the theory,
current implementation, and implications of oracle steering
in detail, and present a case study where we examine the
effectiveness of steering on two systems with complex, time-
based behaviors—the control software of a patient controlled
analgesia pump (a medical infusion pump) and a pacemaker.
We also present an automated method for learning the con-
straints that guide the steering process.

Case study results indicate that steering improves the accu-
racy of the final oracle verdicts—outperforming both default
testing practice and a filtering technique. Oracle steering suc-
cessfully accounts for within-tolerance behavioral differences
between the model-based oracle and the SUT—eliminating a
large number of spurious “failure” verdicts—with minimal
masking of real faults. By pointing the developer towards
behavior differences more likely to be indicative of real faults,
this approach has the potential to reduce testing effort and
reduce development cost.

Our results indicate that the choice of constraints limiting
the choice of steering actions has a major impact on the ability
of steering to account for allowable non-determinism. Rela-
tively strict, well-considered constraints strike the best balance
between the ability to account for non-determinism and the
risk of masking faults. As constraints are loosened, steering
may be able to account for more acceptable deviations, but it
will often mask more faults or even choose suboptimal steering
actions that cause undesired side-effects.

For developers are unsure of what constraints to employ,
we offer a technique that can automatically learn a set of
constraints through a process known as treatment learning.
Given a set of developer-classified test cases, we can extract
information on the steering actions chosen when no constraints
are employed, and apply a treatment learner to identify the
steering actions highly correlated to correct test verdicts. We
can then apply these learned constraints when steering for
a broader set of test executions. For our case examples,
the derived constraint sets were small, strict, and able to
successfully steer the model with only minimal tuning.

We have found that steering is able to automatically adjust
the execution of the oracle to handle non-deterministic, but
acceptable, behavioral divergence without covering up most
fault-indicative behaviors. We recommend the use of steering
as a tool for focusing and streamlining the testing process.

2 BACKGROUND

There are two key artifacts necessary to test software, the
test data—inputs given to the system under test—and the test
oracle [12], [13]. A test oracle is a predicate that judges
the resulting behavior according to some specification of
correctness [2].

The most common form of test oracle is a specified oracle—
one that judges behavioral aspects of the system under test
with respect to some formal specification [2]. Commonly,
such an oracle checks the behavior of the system against a
set of concrete expected values [14] or behavioral constraints
(such as assertions, contracts, or invariants) [15]. However,
specified oracles can be derived from many other sources of
information; we are particularly interested in using behavioral
models, such as those often built for purposes of simulation,
analysis and testing [4].

Although behavioral models are useful at all stages of the
development process, they are particularly effective in address-
ing testing concerns. Models allow testing activities to begin
before the actual implementation is constructed, and models
are suited to the application of verification and automated test
generation techniques [16]. As models are often executable, in
addition to serving as the basis of test generation [4], models
can be used as a source of expected behavior—as a test oracle.

An example of such a model can be see in Figure 1. This
model, written in the Stateflow notation [5], represents the
behavior of a simplified pacemaker—a medical device that
regulates the heart rate of a patient by issuing electrical stimuli
(paces) in the absence of natural activity. This pacemaker
regulates a ventricle by polling sensors every millisecond
(timestamped with timeIn) for a sensed event (sense), and
issuing paces (pace) as regulated by the Lower Rate Limit
(LRL)—a user-specified desired pace per minute rate. Paces
are timestamped using the variable timeOut. Following a
sense or pace, the pacemaker will ignore all sensor values
for a user-specified length of time—V RP , or the Ventricular
Refractory Period—to avoid acting on electrical noise. We will
refer to this example throughout this work as SimplePacing.

Non-determinism is a major concern in embedded time-
based systems. The task of monitoring the environment and
pushing signals through layers of sensors, software, and actua-
tors can introduce points of failure, delay, and unpredictability.
Input and observed output may be skewed by noise in the
physical hardware, timing constraints may not be met with
precision, or inputs may arrive faster than the system can
process them. Often, the system behavior may be acceptable,
even if that behavior is not exactly what was captured in
the model—a model that, by its very nature, incorporates a
simplified view of the problem domain. It is common when
modeling is to omit any details that distract from the core
system behavior in order to ensure that analysis of the models
is feasible and useful.

As a simple example, in this model, the time that the
sensor is polled is the same as the time that output is issued
(timeIn = timeOut). This is unlikely to be true in the
actual software—differences may arise from computation time,
clock drift, and the difficulty of synchronizing the paral-
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Inputs:
sense (boolean) - Whether a natural heartbeat was sensed.
timeIn (int) - Timestamp of input reading.
LRL (int) - Lower Rate Limit, the desired paces per minute.
VRP (int) - Ventricular Refractory Period, period after a 
sense or pace where new senses are ignored.

Outputs:
pace (boolean) - Whether a pace has been commanded.
vrpMode (boolean) - Whether the system is in VRP mode.
timeOut (int) - Timestamp of output event.

INIT
entry:
  periodStart = timeIn
   whenPace = 
     ((1 / (LTL / 60)) * 1000
   pace = 0
   vrpMode = 0
   timeOut = timeIn

WAITING
entry, during:
   pace = 0
   vrpMode = 0
   timeOut = timeIn

[!sense]
SENSE
entry:
   periodStart = timeIn
   pace = 0
   vrpMode = 0
   timeOut = timeIn

[!sense && (timeIn - 
periodStart > VRP)]

[sense]

VRP
entry:
   pace = 0
   vrpMode = 1
   timeOut = timeIn

[sense && (timeIn - 
periodStart > VRP)] [sense]

PACE
entry:
   periodStart = timeIn
   pace = 1
   vrpMode = 0
   timeOut = timeIn

[!sense && (timeIn - 
periodStart > whenPace)]

Fig. 1: SimplePacing model—a system that delivers paces (electrical impulses) at a prescribed rate in the absence of sensed
ventricular activity.

Test Inputs:
Sensed Heartbeat at 4 ms, 380 ms, 1150 ms, 1500ms, 2300 ms, 2685 ms
Lower Rate Limit (LRL): 100 paces per minute (pace if 600ms since last sense/pace)
Ventricular Refractory Period (VRP): 375ms
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Fig. 2: Abstraction-induced behavioral differences between SimplePacing’s model and implementation during execution of a
test case. The Lower Rate Limit describes the minimum number of paces per minute to be issued by the pacemaker. In the
absence of a sensed heartbeat, a pace will be delivered every 600 ms. The Ventricular Refractory Period is a length of time
after a sense or pace where further senses are ignored, as they might be aftershocks or other noise from the last measured
activity.

lel components of the software—but assuming instantaneous
computation time (or a constant computation time) is a com-
mon abstraction when modeling. The SimplePacing model
receives a simple binary sense. However, in the real world,
the electrical impulses being sensed are complex noise-prone
analog readings that the system must decide how to interpret.
These omitted or simplified details may manifest themselves as
differences between the behavior defined in the model and the
behavior observed in the implementation during test execution.
Furthermore, such behaviors are commonly non-deterministic.
Repeated application of the same test stimulus may not result
in the same output if, say, processing time varies.

An example of this is illustrated in Figure 2, where the
behavior of the SimplePacing model and implementation differ
during test execution. In this case, the difference is simple—
minor computation delays result in a situation where there
is a 7ms delay in starting a Ventricular Refractory Period

following a sense or pace. The developers of systems often
recognize the likelihood of such scenarios and prescribe a
tolerance period, a bounded period of time where the activity
is still legal, in the specification. In this case, they might
declare that the SUT is correct as long as the start and end
of the VRP falls in a +/- 8ms window of time of when it is
expected to occur. In fact, this is the actual tolerance prescribed
in a publicly available pacemaker specification [17]. In this
case, the implementation—despite the small delay—initiates
a VRP within the required window of time. However, as
the comparison procedure expects the model and system to
conform, the test will fail.

If this were the sole difference between the model and
system’s behavior, it would be easy enough to adjust the
model or comparison to account for this difference. However,
the behavior of SimplePacing—and many critical embedded
or cyber-physical systems—is stateful. The behavior at one
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step of execution is dependent on the actions and reactions
of the system at all previous execution steps. As can be seen,
execution over the entire life of the test case differs greatly
between the two systems. Because of the delay in starting the
VRP, the input at 380 ms is ignored by the implementation.
The model receives this input 5 ms after its VRP ends, and it
starts a new VRP. However, because that input was ignored, the
implementation issues a pace at 601 ms, while the model does
not do so until 980 ms. In both cases, the behavior exhibited
by that artifact is “correct” with respect to the specifications,
but the two diverge significantly as execution proceeds. In
this case, the source of the divergence is clear, and the
implementation is consistent in how it acts. In practice, such
issues are often more complex—the implementation might
vary when the VRP starts and ends non-deterministically, it
might react to a sense later than intended, or it might issue a
pace either earlier or later than expected.

This raises the question—why use models as oracles?
Alternative approaches could be to turn to an oracle based on
explicit behavioral constraints—assertions or invariants—or to
build declarative behavioral models in a formal notation such
as Modelica [18]. These solutions, however, have their limi-
tations. Assertion-based approaches only ensure that a limited
set of properties hold at particular points in the program [15].
In some cases, models can more easily account for a wider
range of input scenarios. Xie and Memon found that oracles
that incorporate state information (such as models) can have
higher fault-detection capabilities than simpler oracles—even
when shorter test cases are used [19]. Declarative models that
express the computation as a theory in a formal logic allow for
more sophisticated forms of verification and can potentially
account for some forms of non-deterministic behavior [20].
However, Miller et al. have found that developers are more
comfortable building constructive models than formal declar-
ative models [21]. Constructive models are easier to analyze
without specialized knowledge and suitable for analyzing
failure conditions and events in an isolated manner [20]. The
complexity of declarative models and the knowledge needed to
design and interpret such models make widespread industrial
adoption of the paradigm unlikely.

More importantly, it is a widely held view that constructive
models are indispensable in other areas of development and
testing, such as requirements analysis or automated test gen-
eration [16], [22]. From this standpoint, the motivational case
for models as oracles is clear. If these models are already being
built—and are useful throughout development and testing—
their reuse as oracles could save significant amounts of time
and money, and allow developers to automate the execution
and analysis of a large volume of test cases. For these reasons,
model-based approaches have become common in the devel-
opment of critical systems [23]—systems that are particularly
likely to demonstrate the type of non-determinism discussed
previously. Therefore, we seek a way to use constructive
model-based oracles even when faced with non-determinism
introduced during system execution on the target hardware.

3 ORACLE STEERING

We would like to distinguish between correct, but non-
conforming, and fault-indicative behaviors when using a
model-based oracle. A simple approach that could potentially
address this would be to augment the comparison with a filter
that detects and ignores acceptable differences on a per-step
basis. For example, if the model and SUT produce behavior
that differs only by the timestamp, the filter could allow this
difference as long as it falls within a bounded time range.
Such filters are relatively common in GUI or graphic rendering
testing [24]1. This is an example of an indirect solution—a
filter selectively overrides the oracle, but does not interfere
with the internal execution of the model.

However, an issue with indirect solutions like filtering is that
many of the systems we are interested in not only demonstrate
non-determinism, but are stateful. As can be seen in Figure 2,
the non-deterministic shift in a single refractory period can
influence the execution of the system for the entire test case,
leading to irreconcilable differences between the SUT and the
model-based oracle. If state has a minimal impact, or the
sources of non-determinism are simple and isolated, then a
filter is an appropriate solution. If the refractory period is
always delayed in the same way, then a filter could simply
account for that delay. In practice, however, the beginning and
end of that period may change constantly. At the same time,
input interactions and other timed events are still occurring
that influence system behavior. That shift in the refractory
period is likely to be just the first of a series of divergences
introduced because the real system is more complex than the
model. Indirect actions may not be effective at handling these
behavior-impacting events that grow and build off of each
other as time progresses. Any potential solution must account
for not just a divergence between the SUT and the model-based
oracle at a single time step, but with all previous divergences
as well.

Rather than indirect actions, such as filtering, we believe
that the solution is direct action that adjusts the behavior of
the model throughout execution to better reflect the details of
the actual operating environment of the system. We take in-
spiration from program steering—the process of adjusting the
execution of live programs in order to improve performance,
stability, or behavioral correctness [25]. Instead of steering the
behavior of the SUT, however, we steer the oracle to see if
the model is capable of matching the SUT’s behavior. When
the two behaviors differ, we backtrack and apply a steering
action—e.g., adjust timer values, apply different inputs, or
delay or withhold an input—that changes the state of the
model-based oracle to a state more similar to the SUT.

We steer the oracle rather than the SUT because these
deviations in behavior result not necessarily from the incorrect
functioning of the system, but from a disagreement between
the idealized world of the model and the reality of the
execution of the system under test. In cases where the system
is actually acting incorrectly, we don’t want to steer at all—we
want to issue a failure verdict so that the developer can change

1. Filters could easily be implemented using assertion statements checked
following the oracle procedure.
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Fig. 3: An automated testing framework employing steering.

Input: Model, SUT, Tests
1 for test ∈ Tests do
2 stepNumber = 0
3 for step ∈ test do
4 previousState = state(Model)
5 applyInput(SUT, step)
6 applyInput(Model, step)
7 Sm = state(Model)
8 Ssut = state(SUT )
9 if Dis(Sm, Ssut) > 0 then

10 instrumentedModel =
instrument(Model, previousState)

11 steer(instrumentedModel, Sm, Ssut)
12 Snew

m = state(Model)
13 if Dis(Snew

m , Ssut) > 0 then
14 verdict = fail
15 break

16 verdict = pass

Fig. 4: Testing process when steering is employed.

the implementation. In many of these deviations, however, it is
not the system that is incorrect. If the model does not account
for the real-world execution of the SUT, then the model is the
artifact that is incorrect. Therefore, rather than immediately
issuing a failure verdict, we will attempt to correct the behavior
of the model.

Each time a divergence occurs, the model is steered to
account for the mismatch between model and system. Un-
like with indirect solutions, the complexity of handling non-
determinism is reduced because the model is guided to adapt
to the real-world execution of the system as such events occur.
By doing so, steering provides the flexibility to handle non-
determinism, while still retaining the power of the oracle as an
arbiter. Of course, improper steering can bias the behavior of
the model-based oracle, masking both acceptable deviations
and actual indications of failures. Nevertheless, we believe
that by using a set of appropriate constraints it is possible to
sufficiently bound steering so that the ability to detect faults
is still retained.

To steer the oracle model, we instrument the model to match
the state it was in during the previous step of execution,
formulate the search for a new model state as a boolean
satisfiability problem, and use a powerful search algorithm to
select a target state to transition the model to. This search is
guided by three artifacts:

1) A set of tolerance constraints limiting the acceptable
values for the steering variables—a set of model vari-
ables that may be directly manipulated.

2) A dissimilarity function—a numerical function that
compares a candidate model state to the state of the SUT
and delivers a score. We seek the candidate solution that
minimizes this function.

3) A set of generic policies that can control steering.
In a typical testing scenario that makes use of model-based

oracles, a test suite is executed against both the system under
test and the behavioral model. The values of the input, output,
and select internal variables are recorded to a trace file at
certain intervals, such as after each discrete cycle of input
and output. Some comparison mechanism examines those trace
files and issues a verdict for each test case (a failure if any
discrepancies are detected and a pass if a test executes without
revealing any differences between the model and SUT).

Such a framework can be modified to incorporate automated
oracle steering. The updated testing process is detailed in
Figure 4 and illustrated in Figure 3, with steering-related
components shaded in dark gray. In this updated framework,
the comparison mechanism issues a dissimilarity score instead
of a boolean verdict. If the output does not match, the steering
algorithm will instrument the model and attempt to find an
action that minimizes that score. If the model and SUT cannot
be aligned, the comparator will log the final dissimilarity score.

3.1 System Model
In the abstract, we define a model as a transition system M =
(S, S0,Σ,Π,→), defined as:
S is a set of states—assignments of values to system

variables—with initial state S0.
Σ is an input alphabet, defined as a set of input variables

for the model.
Π is a specially-defined steering alphabet—Π ⊆ Σ—a set

of steerable variables—the variables that the steering
procedure is allowed to directly control and modify the
assigned values of.

→ is a transition relation (a binary relation on S), such that
every s ∈ S has some s′ ∈ S with s→ s′.

Any model format that can be expressed as such an M , in
theory, can be the target of a steering procedure. In this work,
our models are written in the Stateflow notation from Math-
works [5]. When steering, we translate the Stateflow models to
the Lustre synchronous programming language to more easily
perform automated transformations (see Section 5.6).

The primary difference of this definition from a standard
state-transition system is the steering alphabet, Π. By defini-
tion, Π ⊆ Σ. That is, the steerable variables are considered to
be input variables, but not all input variables must be steerable.
Variables internal to the model and output variables may be
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specified as steerable, but they are transformed into input vari-
ables for the computation steps where steering is applied. This
transformation enables search algorithms to directly assign
values to these variables. On subsequent, unassisted execution
steps, the model will be again transformed such that those
variables are again internal to the model.

3.2 Selecting a Steering Action

If the initial comparison of model and SUT states sm and ssut
reveals a difference, we attempt to steer the model. Fundamen-
tally, we treat steering as a search process. We backtrack the
model, instrumenting it with the previous recorded state as
the new initial state S0, and seek a steering action—a set of
values for the steerable variables Π that, when combined with
the assigned values to the remaining input variables Σ − Π,
transitions the model to a new state snewm . Note that, if the
steering process fails to produce a solution, snewm = sm.
The chosen steering action is an assignment to the variables
in Π that satisfies the tolerance constraints, minimizes the
dissimilarity function, and follows any additional steering
policies (for example, it may need to meet some dissimilarity
threshold to be chosen).

The set of tolerance constraints governs the allowable
changes to values of the steerable variables Π. These con-
straints define bounds on the non-determinism or behavioral
deviation that can be accounted for with steering. Constraints
can be expressed over any internal, input, or output variables
of the model—not just the members of Π. Constraints can even
refer to the value of a variable in the SUT. However, implicitly,
these constraints limit the values that can be assigned to Π.

Consider the scenario outlined in Figure 2. We could use
steering to correct VRP-related mismatches by defining V RP
as a member of Π and allowing the search algorithm to assign
a new value to it. As we want to limit the change that can be
imposed on V RP , we must set a constraint. One reasonable
choice would be to allow the new value of V RP to fall
anywhere between a minimum of (V RP original − 8ms) and
a maximum of (V RP original + 8ms).

This differs from setting a filter to compare the values of
sm and ssut because, by changing the state of the model,
we impact the state of the model in future steps as well. By
adjusting the model each time it diverges, we eliminate the
need to track the entire execution history.

We could also create a constraint that combines mul-
tiple members of Π, that takes into account model vari-
ables not in Π, or that depends on the value of a
variable in the SUT. For example, we could estab-
lish a constraint on sense that depends on the out-
put variable timeOut as follows: if ((timeOutsut ≥
timeOutoriginal) and (timeOutsut ≤ timeOutoriginal +
4ms) then ((sensenew = 0) or (sensenew =
1)) else (sensenew = senseoriginal). That is, we can freely
change whether an event was sensed, as long as the value of
timeOut in the SUT is within a certain range of the value of
timeOut in the model.

After using the tolerance constraints to limit the number of
candidate solutions, the search process is guided to a solution

through the use of a dissimilarity function Dis(model state,
SUT state), that compares the state of the model to the
observable state of the SUT. We seek a minimization of
Dis(snewm , ssut). There are many functions that can be used
to calculate dissimilarity. Cha provides a good primer on
the calculation of dissimilarity [26]. As we primarily used
models with numeric variables, dissimilarity functions such
as the Euclidean distance—the average difference between
two variable vectors—were found to be sufficient to guide
this selection. When considering variable comparisons over—
for instance—strings, more sophisticated dissimilarity metrics
(such as the Levenshtein distance [27]) are appropriate.

We can further constrain the steering process by employing
a set of general policy decisions on when to steer. For
example, one might decide not to steer unless Dis(snewm , ssut)
= 0, that is, there must exist a steering action that results in
a model state identical to the SUT state.

These policies are intended to capture constraints that can
be applied to control steering, regardless of the system under
test. While such policies could, in many cases, be expressed
as part of the tolerance constraints, they have been separated
and expressed as generic options that can be easily enabled or
disabled when executing the steering framework. The ability
to invoke options like the one above gives a user a set of
options to try when they begin to explore steering.

To summarize, the new state of the model-based oracle
following the application of a steering action must be a state
that is reachable from the current state of the model, must
fall within the boundaries set by the tolerance constraints,
and must minimize the dissimilarity function. This process
is illustrated in Figure 5 for one test step from the test in
Figure 2 (when input occurs 380 ms into the test). Sim-
plePacing is instrumented such that the initial state matches
the state that the model was in, following the application of
input in the immediately-preceding time step. The steerable
variable set Π consists of the input V RP , with the tolerance
constraint that the chosen value of V RP must fall between
V RP original−8ms and V RP original+8ms. We examine the
candidate states, evaluate their dissimilarity score, then choose
the steering action that minimizes this score. We transition the
model to this state and continue test execution.

We have implemented the basic search approach outlined
in Figure 6. Our search process is based on bounded model
checking [28], an automatic approach to property verification
for concurrent, reactive systems [29]. The problem of identi-
fying an appropriate steering action can be expressed as a Sat-
isfiability Modulo Theories (SMT) instance, a generalization
of a boolean satisfiability instance in which atomic boolean
variables are replaced by predicates expressed in classical first-
order logic [30]. A SMT problem can be thought of as a form
of a constraint satisfaction problem—in our specific case, we
seek a set of values for the steerable variables that obeys the
set of tolerance constraints and has a lower dissimilarity score
then the original. We have made use of the Kind [28] model
checker, and the Z3 constraint solver [31].

When we execute tests, each test step is checked explicitly
for conformance violations by comparing the state of the
oracle and the SUT. If a mismatch is detected, we allow the
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Fig. 5: Illustration of steering process for SimplePacing (Figure 1) for one step of the test depicted in Figure 2.

Input: Model, Sm, Ssut

1 if Dis(Sm, Ssut) > 0 then
2 DisConstraint := λthreshold→ λstate→

Dis(state, Ssut) ≤ threshold
3 targetState := searchForNewState

(Model, Sm, Ssut, Constraints,DisConstraint(0))
4 if targetState = NULL then
5 newState := Sm

6 T := 1
7 while newState 6= NULL do
8 targetState := newState
9 newState := searchForNewState

(Model, targetState, Ssut, Constraints,
DisConstraint(T ×Dis(targetState, Ssut))

10 T := 0.5× T

11 transitionModel(Model, targetState)

Fig. 6: Outline of steering process.

steering framework to search for a new solution. In order to
achieve this, we explicitly instrument the model such that the
current state (before applying the chosen steering action) is the
“initial” state. This instrumentation also embeds the calcula-
tion of the dissimilarity function and the tolerance constraints
directly into the model. Constants are also embedded in the
model for each steerable variable and output variable in the
model and each output variable in the SUT describing what
occurred originally during test execution. That is, they tell us
what happens when we do not steer. These values are used
both for calculating the value of the dissimilarity score and in
the tolerance constraints2.

An expression is formulated containing the tolerance con-
straints and the threshold that we want the new dissimilarity
score to beat. This expression is then negated because we want
a counterexample—we assert that the constraints can not be
satisfied, and ask the search algorithm to find a set of values

2. An example of this instrumentation and additional technical details can
be seen in [32].

for the steerable variables that can satisfy those constraints
within a single transition. We take the counterexample offered
by the search algorithm, extract the values of the steerable
variables, and replace the original values of those variables in
the trace. We then apply the new set of input (non-steerable
inputs that retain their original values and the new values of
the steerable variables) to the instrumented model, record new
variable values in the trace, and continue test execution.

It should be noted that an SMT solver may not be able
to directly minimize Dis(snewm , ssut). Instead, such solvers
will offer any solution with a lower dissimilarity score. As
outlined in Figure 6, we instead find a minimal solution by first
using the constraint Dis(snewm , ssut) = 0—we ask the solver
for a solution where Snew

m = Ssut. If an exact minimization
cannot be found, and our policies still allow steering in that
situation, we then attempt to narrow the range of possible
solutions by setting a threshold value T and using the con-
straint Dis(snewm , ssut) < (T ∗Dis(sm, ssut)). If a solution is
possible, we continue to set T = 0.5 ∗T until a solution is no
longer found. Once that constraint can no longer be satisfied,
we take the last viable solution and iteratively apply the
constraint Dis(snewm , ssut) < Dis(sprevious new

m , ssut) until
we can no longer find a better solution. The best solution
found will be selected as the steering action.

It should also be noted that the results and stability of the
search process depend on the algorithm employed. The solver
used in our implementation, Z3, returns deterministic results.
Other algorithms may not return the same steering action each
time a test is executed.

3.3 Defining Constraints
The efficacy of the steering process depends on the tolerance
constraints and policies employed. If the constraints are too
strict, steering will be ineffective—leaving as many “false
failure” verdicts as not steering at all. On the other hand, if
the constraints are too loose, steering runs the risk of covering
up real faults in the system. Therefore, it is important that the
constraints to be employed are carefully considered.
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Often, constraints can be inferred from the system re-
quirements and specifications. For example, when designing
an embedded system, it is common for the requirements
documents to specify a desired accuracy range on physical
sensors. If the potential exists for a model-system mismatch
to occur due to a mistake in reading input from a sensor, than
it would make sense to take that range as a constraint on that
sensor input and allow the steering algorithm to try values
within that range.

We recommend that users err toward strict constraints to
avoid masking faults. To give an example, while the inputs
of a medical device may include a patient prescription, we
would recommend that steering be prohibited from altering the
prescription values, as manipulation of those might threaten
the life of a patient. Instead, the focus of constraints should
be on areas where adding flexibility to the oracle cannot harm
a patient, such as minor timer or sensor adjustments.

Constraints may be defined over any of the variables of
the system (input, output, or internal to a function). When no
constraints are specified for a variable, no steering actions may
be taken. We recommend that testers start with a minimal set of
strict constraints, then loosen them until the number of false-
failure verdicts is sufficiently reduced. While it is possible
to steer the value of output variables directly, we do not
generally recommend doing so. It is safer to steer the factors
leading to unexpected output than to directly overwrite that
output. As steering decouples the specification of allowable
non-determinism from the model, testers can experiment with
different sets of constraints and policies. Alternative options
can easily be explored by swapping in a new constraint file
and executing the test suite again until they are confident in
their selections.

As the software changes during development, tests must
often be altered to account for changes in SUT interfaces or
other internal behavioral changes. As the constraints employed
by steering are independent of the test cases themselves, the
use of steering does not increase the required test maintenance
effort. However, if changes to the SUT make certain steering
actions illegal, alter the behavior of system variables, or
remove variables used in constraints, then some constraint
maintenance must take place. As we recommend minimal sets
of constraints, the required level of constraint maintenance
should be low.

3.4 Handling Non-Determinism Through Steering or
the Underlying Model

By incorporating a sophisticated model of time or other
forms of non-determinism, some of these modeling approaches
discussed in Section 8 could account for a subset of the non-
deterministic behaviors induced during execution of the SUT—
particularly variance related to timing issues. A natural ques-
tion, then, is whether to use steering or to simply incorporate
this non-determinism into the underlying model.

In such cases, the model must be built with those execution
behaviors in mind. These behaviors depend specifically on
the particular details of the real-world execution—such as
the underlying hardware platform. Such details are difficult to

anticipate, and assumptions would need to be made at the time
that the model is constructed. If the model is built—as many
are—during requirements engineering, then it is difficult, if
not impossible, to make correct assumptions. Fixing incorrect
assumptions may require extensive overhaul of the model’s
structure. This task may need to be performed on a regular
basis as the hardware or software evolves. The alternative is
to wait until the implementation is ready to be tested to build
the model-based oracle. This is also an inefficient outcome if
the model would be useful for early-lifecycle tasks such as
requirements analysis.

There is an argument to be made for not building these
details directly into the model in the first place. Effective
requirements analysis requires clarity. Being forced to incor-
porate the full scope of the non-deterministic behavior of the
SUT into the model could muddle its clarity, making the
analysis of the requirements more difficult and potentially
leading to an incorrect implementation.

Through the use of the tolerance constraints, we effectively
decouple the model from the rules governing conformance.
This decoupling makes non-determinism implicit and the
approach more generally applicable. Explicitly specified non-
deterministic behavior—as required by the model-based ap-
proaches described above—would limit the scope of non-
determinism handled by the oracle to what has been planned
for by the developer and subsequently modeled. It is difficult
to anticipate the non-determinism resulting from deploying
software on a hardware platform, and, thus, such models will
likely undergo several revisions during development. Steering
instead relies on a set of rule-based constraints that may be
easier to revise over time. Additionally, by not relying on a
specific model format, steering can be made to work with
models created for a variety of purposes. By not being tied
to a specific test generation framework, we can make use of
tests from a variety of tools, or more easily build steering into
a number of existing frameworks.

Once allowable behavioral deviations have been observed,
if a non-deterministic model is employed, one could choose to
either steer to temporarily account for such situations or update
the model to permanently account for such situations. These
options are not mutually exclusive. Steering could be used to
refine the tester’s understanding of the behavioral divergences
they see in practice. After using steering, they could update the
model. In that case, steering is useful as a discovery tool. If, for
example, different hardware platforms are being considered, it
may be wise to use steering until stable decisions have been
reached. This prevents the need to make frequent—potentially
difficult—model revisions.

4 LEARNING CONSTRAINTS

Choosing the correct constraints is essential to accurate steer-
ing, but it is not always clear what those constraints should
be, or even what variables should be manipulated in the first
place. However, even in these situations, the developers of the
system under test should at least have an idea of whether a
test should pass or fail. A human oracle is often the ultimate
judge on the correctness, as the developers will have a more



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD 9

Tester 
classifies test 

cases

SUT

MBO
Steering

Execute tests on 
SUT and MBO, 
steering when 

needed

change to x, change to y, result
2, 0, Verdict changed to correct outcome
0,0, No change imposed
1, 5, Verdict changed to incorrect outcome

MBO

Extract data set from actions taken 
by steering for each test step.

2,0,VC
0,0,NC
1,5,VI

Learner
Theories on “Correct Steering”
[x changed by M, y changed by N]
...

Use extracted data set to learn 
theories on the actions that lead to 
“correct” and “incorrect” steering.

Theories on “Correct Steering”
[x changed by M, y changed by N]
... Filter

Steering Constraints

Theories on “Incorrect Steering”
[y changed by N]
...

Filter for theories that only appear in 
“correct” set. Use the resulting set 

as your steering constraints.

Fig. 7: Outline of learning process.

comprehensive idea of what constitutes correctness than any
constructed artifact, even if they are not completely sure of
the specific factors that should lead to that verdict.

It is possible to use human-classified test verdicts to learn
an initial set of constraints. We can treat constraint elicitation
as a machine learning problem where we execute a series
of tests against the SUT, steer with no value constraints at
all—the only limitation being what states are reachable within
one transition through changes to the steerable variables—
and record information on what changes were imposed by the
steering algorithm. If a human serves as an oracle on those
tests, we can then evaluate the “correctness” of steering.

For purposes of constraint elicitation, we care about the
effects of steering in two situations: successfully steering
when we are supposed to steer and successfully steering when
we are not supposed to steer. By observing the framework-
calculated oracle verdict before and after steering and compar-
ing it to the human-classified oracle verdict, we can determine
what test steps correspond to those two situations. Using that
correctness classification and a set of data extracted from each
test step, we can form a data set that can be explored by a
variety of learning algorithms. This process is illustrated in
Figure 7. The data we extract at each test step is detailed
in Table 1. For each steerable variable, we record how much
it was altered by steering. For each oracle-checked variable,
we record both how much it differed between model and
system before steering and how much it was changed after
steering. Then we record a classification—did steering perform
the correct action? The classification ChangedCorrect is
assigned when steering acted and arrived at the same verdict as
the human. The classification ChangedIncorrect is assigned
when the post-steering verdict does not match the human-
assigned verdict. We also record data when steering does not
act at all or does not change the pre-steering verdict. This is
assigned the classification NotChanged.

We can use this extracted set of data to elicit a set of
tolerance constraints. A standard practice in the machine
learning field is to classify data—to use previous experience
to categorize new observations [33]. As new evidence is
examined, the accuracy of these categorizations is then refined.

We are instead interested in the reverse scenario. Rather
than attempting to categorize new data, we want to work
backwards from the classifications to discover why steering
acted correctly or incorrectly—a process known as treatment
learning [34]. Treatment learning approaches take the clas-
sification of an observation and try to reverse engineer the
evidence that led to that categorization. Such learners produce
a treatment—a small set of data value boundaries that, if
imposed, will produce a subset of the original data matching
the desired classification.

Ultimately, classifiers strive to increase accuracy by growing
a collection of statistical rules. As a result, if the data is
complex, the model employed by the classified will also be
complex. Instead, treatment learning focuses on minimality,
delivering the smallest rule that, when imposed, causes the
largest impact. This focus is exactly what makes treatment
learning interesting as a method of producing constraints. We
wish to constrain steering to a small set of steerable variables,
with strict limitations on allowed value changes. Treatment
learning can be used to generate a minimal initial set of
constraints or to tune an existing set of constraints.

To give an example, consider the base class distribution
after steering a model-based oracle for a set of classified
tests and extracting the data detailed above, as shown on the
left in Table 2. This sort of base class distribution makes
conceptual sense—on many test steps, steering does nothing.
It only kicks in when the oracle and model differ, makes a
change, and likely reduces the number of future steps in the
same test case where differences occur. By targeting the class
ChangedCorrect, we can attempt to elicit a treatment that
details what happens when steering acts correctly—when it
changes the oracle verdict in a way that matches the human-
assigned verdict. We can extract treatments, ranked by their
score assigned by the treatment learner’s objective function.

Example treatments are shown in Table 3. Each treatment
includes variables and their value ranges that are correlated to
the targeted classification. The first treatment in Table 3 states
that the major indicators of a correct steering action are when
the value of Variable1 is reduced between 0-4 and the value
of Variable2 is increased by 1-2 by steering. By imposing that
treatment, we end up with the class distribution shown on the
right in Table 2. This class distribution shows strong support
for the produced treatment. By allowing steering to change
Variable1 and Variable2 in the prescribed manner, steering
tends to match the human-assigned verdict.

In order to create a set of tolerance constraints, we
first create 10 treatments like those seen in Table 3 using
“ChangedCorrect” as our target class (we wish to know what
actions steering takes when it works correctly) and extract
all of the individual variable and range pairings. Treatment
learning algorithms operate scholastically, so 10 treatments
are produced to account for randomness. Some of these items
may not actually be indicative of successful steering—they
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Variables Involved Attribute Values
For each steerable variable How much was it changed? Continuous

For each oracle-checked variable How much did it differ before steering? Continuous
For each oracle-checked variable How much was it changed? Continuous

(class variable) Did steering change the verdict correctly? NotChanged, ChangedIncorrect, ChangedCorrect

TABLE 1: Data extracted for tolerance elicitation. The classification ChangedCorrect means that the post-steering verdict
matched the human-assigned verdict, while ChangedIncorrect implies that the post-steering verdict does not match.
NotChanged means that steering does not act at all or does not change the pre-steering verdict.

Class Percentage Class Percentage
NotChanged 96% NotChanged 0%

ChangedIncorrect 1% ChangedIncorrect 14%
ChangedCorrect 2% ChangedCorrect 86%

TABLE 2: Base class distribution and class distribution of the
remaining subset of the data after imposing a treatment.

Rank Treatment
1 [changeToVariable1=[-4.000000..0.000000]

[changeToVariable2=[1.000000..2.000000]
2 [changeToVariable2=[1.000000..2.000000]

[changeToVariable3=[-10.000000..0.000000]
3 [changeToVariable2=[1.000000..2.000000]
4 [changeToVariable4=[-15.000000..0.000000]

[changeToVariable2=[1.000000..2.000000]
5 [changeToVariable2=[1.000000..2.000000]

[changeToVariable5=[-176.000000..0.000000]

TABLE 3: Examples of learned treatments. Treatments are
assigned a “goodness” score and sorted by that score. Each
treatment includes variables and their value range that is
correlated to the targeted classification.

((Variable3 >= concrete_oracle_Variable3 - 10.0) and
(Variable3 <= concrete_oracle_Variable3))

((Variable2 = concrete_oracle_Variable2) or
((Variable2 >= concrete_oracle_Variable2 + 1.0) and
(Variable2 <= concrete_oracle_Variable2 + 2.0)))

((Variable1 >= concrete_oracle_Variable1 - 4.0) and
(Variable1 <= concrete_oracle_Variable1))

((Variable6 >= concrete_oracle_Variable6 - 13.0) and
(Variable6 <= concrete_oracle_Variable6))

(Variable7 = concrete_oracle_Variable7)
(Variable8 = concrete_oracle_Variable8)
...
(Variable20 = concrete_oracle_Variable20)

Fig. 8: Examples of produced tolerances. concrete oracle X
is a constant reflecting the value of that variable when steering
is not employed.

may be variable values selected by biases in the algorithm
that selects the steering actions that appear in both correct and
incorrect steering. Thus, we also produce 10 treatments using
“ChangedIncorrect” as the target class. This produces a set of
treatments indicating what happens when steering incorrectly
changes an oracle verdict. We remove any variable and value
range pairings that appear in both the “good” and “bad” sets,
leaving only those that appear in the good set. We then form
our set of elicited tolerance constraints by locking down any
variables that constraints were not suggested for. This results
in a set of tolerances similar to that shown in Figure 8.

Notable treatment learning algorithms include the TAR fam-
ily (TAR2 [34], TAR3 [35], [36], [37], and TAR4.1 [38])—a
series of algorithms utilizing a common core structure, but em-
ploying different objective functions and search heuristics—
and the STUCCO contrast-set learner [39]. Other optimiza-
tion algorithms have also been applied to treatment learning,

including simulated annealing and gradient descent [38]. In
this work, we employed the TAR3 algorithm.

5 CASE STUDY

We aim to assess the capabilities of oracle steering and the
impact it has on the testing process. Thus, we pose the
following research questions:

1) To what degree does steering lessen behavioral differ-
ences that are legal under the system requirements?

2) To what degree does steering mask behavioral differ-
ences that fail to conform to the requirements?

3) Are there situations where a filtering mechanism is more
appropriate than actively steering the oracle?

4) To what degree does the strictness of the employed con-
straints impact the correctness of steered oracle verdicts?

5) How accurate are tolerance constraints learned automat-
ically from previously steered test execution traces?

5.1 Experimental Setup Overview
Our case study centers around models of two industrial-
scale medical device systems. The first is the management
subsystem of a generic Patient-Controlled Analgesia (GPCA)
infusion pump [40]. This subsystem takes in a prescription
for a drug—as well as several sensor values—and determines
the appropriate dosage of the drug to be administered to a
patient over a given period of time. The second system is based
on the pacing subsystem of an implanted pacemaker, built
from the requirements document provided to the Pacemaker
Challenge [17]. This subsystem monitors cardiac activity and,
at appropriate times, commands the pacemaker to provide
electrical impulses to the appropriate chamber of the heart.

These models are developed in the Stateflow notations and
translated into the Lustre synchronous programming language
to more easily perform automated transformations [41]. The
simplicity and declarative nature of Lustre make it well-suited
to model checking and verification [28]. This also makes it
an ideal language to use as a target for steering because the
steering constraints and dissimilarity function can be encoded
directly into the model, and a steering action can be selected
using the same algorithms that are regularly used to perform
verification. Because typical discrete state-transition systems
are semantically similar to Lustre, it is easy to translate
from other modeling paradigms to Lustre while preserving the
semantic structure of those models.

Both case examples are complex real-time systems of the
type common in the medical device domain. Details on the
Stateflow and translated Lustre models are provided in Table 4.

To evaluate the performance of oracle steering, we per-
formed the following for each system:
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# States # Transitions Lustre LOC Input Variables Internal Variables Output Variables
Infusion Mgr 23 50 6,299 19 825 5

Pacing 48 120 24,017 18 545 5

TABLE 4: Case example information—number of states, number of transitions, lines of code when translated to Lustre, number
of input variables, number of internal variables, and number of output variables.

1) Generated system implementations: We approximated
systems running on embedded hardware by creating
versions of each model with non-deterministic timing
elements. We also generated 50 mutated versions of each
version of each system with seeded faults (Section 5.2).

2) Generated tests: We randomly generated 100 tests for
each case example, each varying from 30-100 test steps
(input to output sequences) in length (Section 5.2).

3) Set steering constraints: We constrained the variables
that could be adjusted through steering and the values
that those variables could take on, and established dis-
similarity metrics (Sections 5.4 and 5.3).

4) Assessed impact of steering: For each combination of
SUT, test, and dissimilarity metric, we attempted to steer
the oracle to match the behavior of the SUT. We compare
the test results before and after steering and evaluate
the precision and recall of our steering framework,
contrasted against the general practice of not steering
and a step-by-step filtering mechanism (Section 5.6).

5) Assessed impact of tolerance constraints: We repeated
steps 3-4 for each SUT and five mutants using four dif-
ferent sets of tolerance constraints, varying in strictness,
in order to assess the impact of the choice of constraints
(Sections 5.4 and 5.6).

6) Learned new tolerance constraints: Using the original
and steered traces for each model and the trace for each
SUT, for each of the four constraint levels and both
dissimilarity metrics, we extracted 10 sets of tolerance
constraints (= 80 per SUT) using the TAR3 treatment
learning algorithm (Section 5.5).

7) Assessed performance of learned tolerance con-
straints: We repeated steps 3-4 for each SUT using
the extracted tolerance constraints in order to assess the
quality of those constraints.

5.2 System and Test Generation

To produce implementations of the example systems, we
created alternative versions of each model, introducing real-
istic non-deterministic timing changes to the systems. Non-
determinism was simulated in this study in order to more
clearly examine the effectiveness of steering under controlled
experimental conditions. For the Infusion system, we built (1)
a version of the system where the exit of the patient-requested
dosage period may be delayed by a short period of time, and
(2) a version of the system where the exit of an intermittent
increased dosage period (known as a square bolus dose) may
be delayed. These changes are intended to mimic situations
where, due to hardware-introduced computation delays, the
system remains in a particular dosage mode for longer than
expected.

For the Pacing system, we introduced a non-deterministic
delay on the arrival of sensed cardiac activity. As a pacemaker

is a complex, networked series of subsystems that depend
on strict timing conditions, a common source of mismatch
between model and system occurs when sensed activity arrives
at a particular subsystem later than expected. Depending on
the extent of the delay, unnecessary electrical impulses may be
delivered to the patient or the pacemaker may enter different
operational modes than the model.

For each of the original models and SUT variants, we
have also generated 50 mutants (faulty implementations) by
introducing a single fault into each model. This ultimately
results in a total of 152 SUT versions of the Infusion system—
two versions with non-deterministic timing behavior, fifty
versions with faults, and one hundred versions with both
non-deterministic timing and seeded faults (fifty per timing
variation)—and 101 SUT variants of the Pacing system—one
SUT with non-deterministic timing, fifty with faults, and fifty
with both non-deterministic timing and seeded faults.

The mutation testing operators used in this experiment
include changing an arithmetic operator, changing a relational
operator, changing a boolean operator, introducing the boolean
¬ operator, using the stored value of a variable from the
previous computational cycle, changing a constant expression
by adding or subtracting from integer and real constants (or
by negating boolean constants), and substituting a variable
occurring in an equation with another variable of the same
type. The mutation operators used are discussed at length in an
earlier report [42], and are similar to those used by Andrews
et al, where the authors found that generated mutants are a
reasonable substitute for real faults in testing experiments [43].

Using a probabilistic random testing algorithm, we gener-
ated 100 tests for each system. Each test captures a period of
time long enough to observe complex time-sensitive behaviors,
but still short enough to yield a reasonable experiment cost.
For the Infusion system, each test is thirty steps in length,
representing thirty seconds of system activity. For the pacing
system, the tests range 30-100 steps in length, representing
input and output events occurring over 3000 ms of activity.
The generation algorithm allows testers to assign probabilities
to particular input values or ranges. In this case, these proba-
bilities were chosen to reflect “normal” execution of the sys-
tem, rather than extreme events—for example, Infusion Mgr’s
power is very unlikely to be turned off during a test case. For
this study, normal execution was favored to clearly examine
the influence of steering.

These tests were then executed against each model and SUT
variant in order to collect traces. In the SUT variants with
timing fluctuations, we controlled those fluctuations through
the use of an additional input variable. The value for that
variable was generated non-deterministically, but we used the
same value across all systems with the same timing fluctuation.
As a result, we know whether a behavioral mismatch is due to
a timing fluctuation or a seeded fault in the system. Using this
knowledge, we manually classified each test as an “expected
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pass” or as failing due to an “acceptable timing deviation”, an
“unacceptable timing deviation”, or a “seeded fault.”

5.3 Dissimilarity Metrics
We have made use of two dissimilarity metrics when compar-
ing states. The first is the Manhattan (or City Block) distance.
Given vectors representing the state of the SUT and the model-
based oracle—where each member of the vector represents the
value of a variable—the dissimilarity between the two vectors
can be measured as the sum of the absolute numerical distance
between the state of the SUT and the model-based oracle:

Dis(sm, ssut) =

n∑
i=1

|sm,i − ssut,i| (1)

The second is the Squared Euclidean distance. Given vectors
representing the state, the dissimilarity between the vectors can
be measured as the “straight-line” numerical distance between
the two vectors. The squared variant was chosen because it
places greater weight on states that are further apart in terms
of variable values.

Dis(sm, ssut) =

n∑
i=1

(sm,i − ssut,i)
2 (2)

A constant difference of 1 is used for differences between
boolean variables or values of an enumerated variable. All
numerical values are normalized to a 0-1 scale using prede-
termined minimum and maximum values for each variable.

When computing a dissimilarity metric—or, for the matter,
an oracle verdict—we must choose a set of variables to
compare. As we cannot assume a common internal structure
between the SUT and the model, we calculate similarity using
the output variables of both. For the infusion pump, this
includes the commanded flow rate, the current system mode,
the duration of active infusion, a log message indicator, and
a flag indicating that a new infusion has been requested. For
the pacemaker, this set of variables consists of an atrial event
classification, a ventricular event classification, the time of the
event, the time of the next scheduled atrial pace attempt, and
the time of the next scheduled ventricular pace attempt.

5.4 Manually-Set Tolerance Constraints
In order to assess the performance and capabilities of steering,
we have specified a realistic set of tolerance constraints for
both systems. These constraints were developed using the
actual software and hardware specifications for each system
and by consulting with domain experts. The chosen tolerance
constraints for the Infusion system include:
• There are five timers within the system—the duration of

the patient-requested bolus dose period, the duration of
the intermittent square bolus dosage period, the lockout
period between patient-requested bolus dosages, the in-
terval between intermittent square bolus dosages, and the
total duration of the infusion period. For each of those, we
placed an allowance of (CurrV al−1) <= NewV al <=
(CurrV al + 2). E.g., following steering, a dosage dura-
tion is allowed to fall between one second shorter and
two seconds longer than the original prescribed duration.

and, for the Pacing system:
• The input for a sensed cardiac event includes a

timestamp indicating when the system will pro-
cess the event. For this event, we placed an al-
lowance of Current V alue <= New V alue <=
(Current V alue + 4). Following steering, the sensed
event can take place up to four milliseconds after the
original timestamp.

• Boolean input variables indicate whether an event was
sensed in the atrial or ventricular chambers of the heart.
These can be toggled on or off, to better match the noise
filtering conducted by the SUT.

These constraints reflect what we consider a realistic appli-
cation of steering—we expect issues related to timing, and,
thus, allow a small acceptable window around the behaviors
that are related to timing. For the Infusion system, we do not
expect any sensor inaccuracy, so we do not allow freedom in
adjusting sensor-based input. For Pacing, we expect a small
amount of event reordering and noise sensitivity, so we allow
a small amount of freedom in changing sensor-based values.
As these are restrictive constraints, we deem these the Strict
tolerance constraints.

In order to assess the impact of different sets of constraints,
we took each SUT variant, five randomly-selected mutants
of the original system, and five randomly-selected mutants
for each SUT and attempted to steer them using the Strict
tolerances and three additional sets of tolerances: Medium,
Minimal, and No Input Constraints.

For the Infusion system, these are as follows:
• Medium: All time-based inputs, (CurrV al − 2) <=

NewV al <= (CurrV al + 5). All other variables are
not allowed to be steered.

• Minimal: All time-based inputs completely uncon-
strained. All other variables are not allowed to be steered.

• No Input Constraints: All input variables unconstrained.
and, for the Pacing system:
• Medium: Ventricle and atrial sensed events

unconstrained. Event time, Current V alue <=
New V alue <= (Current V alue + 25). Refractory
periods, Current V alue <= New V alue <=
(Current V alue + 10). All other variables are not
allowed to be steered.

• Minimal: Ventricle and atrial sensed events and
event time unconstrained. Refractory periods,
Current V alue <= New V alue <=
(Current V alue + 25). Lower and upper rate
limit, Current V alue <= New V alue <=
(Current V alue + 10). All other variables are
not allowed to be steered.

• No Input Constraints: All input variables unconstrained.
These additional constraint sets reflect a gradual relaxation

of the limits on steering, and can demonstrate the impact that
the choice of constraints has on the effectiveness of steering.

5.5 Learning Tolerance Constraints
In Section 4, we discussed the process of using treatment
learning to extract a set of tolerance constraints. We wish to
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know whether we can learn tolerances for our case studies, and
whether these tolerances are effective at guiding the steering
process. Using the process outlined previously, we generated
tolerance constraints for the Infusion variant where the patient
bolus period can be extended non-deterministically and for
the Pacing system. Starting from the strict, medium, and
minimal tolerance constraints and using no input constraints,
we executed tests, steered the models, and extracted data from
those executions and classifications on what the correct verdict
should be post-steering. Because the treatment learners use a
stochastic search process, we generate ten sets of constraints
per preexisting constraint set (i.e., 10 sets generated after
extracting data from steering with strict tolerance constraints,
10 sets generated after extracting data from steering with no
input constraints, etc). We repeat this for each dissimilarity
metric. This results in eighty sets of tolerance constraints for
each system (4 constraint levels x 10 repeats x 2 metrics).

We generate tolerances using the TAR3 treatment learning
algorithm [38], [35], [36], [37]. It produces treatments by first
being fed a set of training examples. Each example consists
of values, discretized into a series of ranges, for a given
set of attributes. This set of value ranges is directly mapped
to a specific classification. As in Section 4, each example
corresponds to a test step, where the attributes of the data
set represent the changes made to variable values by steering
and the correctness of the changes.

In order to create a set of tolerance constraints, we first
generate 10 treatments—like those seen in Table 3—that
indicate the correct use of steering to adjust the state of
the model. Some of these items may not actually indicate
successful steering—they may be steering actions that occur
at the same time as actions that are actually good. Thus,
we also produce 10 treatments that correspond to incorrect
steering actions, and remove any treatments that appear in
both the “good” and “bad” sets. We then form our set of
elicited tolerance constraints by locking down any variables
that constraints were not suggested for. This results in a set
of tolerances similar to that shown in Figure 8. We repeat this
process ten times for each constraint level and dissimilarity
metric in order to control for the effects of variance.

5.6 Evaluation
Using the generated artifacts—without steering—we moni-
tored the output during each test, compared the results to
the values of the same variables in the model-based oracle
at each time step to calculate the dissimilarity score, and
issued an initial verdict3. Then, if the verdict was a failure
(Dis(sm.ssut) > 0), we steered the model-based oracle, and
recorded a new verdict post-steering. The variables used in
establishing a verdict are the five output variables of the
system.

In Section 3, we stated that an alternative approach to
steering would be to apply a filter on a step-by-step basis. We
have implemented such a filter for the purposes of establishing
a baseline to which we can compare the performance of

3. This corresponds to “oracle strategy 2” in Li and Offutt’s hierarchy—
checking the return values of methods invoked during each transition [44]

Initial Verdict Pass (Post-Steering) Fail (Post-Steering)
Pass TN FP

Fail (Due to Timing,
Within Tolerance) TN FP
Fail (Due to Timing,
Not in Tolerance) FN TP

Fail (Due to Fault) FN TP

TABLE 5: Verdicts: T(true)/F(false), P(positive)/N(negative).

steering. This filter compares the values of the output variables
of the SUT to the values of those variables in the model-based
oracle and, if they do not match, checks those values against a
set of constraints. If the output—despite non-conformance to
the model—meets these constraints, the filter will still issue a
“pass” verdict for the test.

For the Infusion Mgr system, the filter will allow a test
to pass if (despite non-conformance) values of the output
variables in the SUT satisfy the following constraints:
• The current mode of the SUT is either “patient

dosage” mode or “intermittent dosage” mode, and
has not remained in that mode for longer than
prescribed duration + 2 seconds.

• If the above is true, the commanded flow rate should
match the prescribed value for the appropriate mode.

• All other output variables should match their correspond-
ing variables in the oracle.

As we expect a non-deterministic duration for the patient
dosage and intermittent dosage modes (corresponding to the
seeded issues in the SUT variants), this filter should be able
to correctly classify many of the same tests that we expect
steering to handle.

For the Pacing system, the filter will allow a test to pass if
the values of the output variables satisfy:
• The event timestamp on the output and the scheduled

time of the next atrial and ventricular events fall within
four milliseconds of the time originally predicted by the
model.

• All other output variables should match their correspond-
ing variables in the oracle.

Similar to the Infusion Mgr system, we expect short non-
deterministic delays in when the Pacing system issues an
output event.

We compare the performance of the steering approach
to both the filter and the default practice of accepting the
initial test verdict. We can assess the impact of steering or
filtering using the verdicts made before and after steering by
calculating:
• The number of true positives—steps where an approach

does not mask incorrect behavior;
• The number of false positives—steps where an approach

fails to account for an acceptable behavioral difference;
• And the number of false negatives—steps where an

approach does mask an incorrect behavior.
The testing outcomes in terms of true/false posi-

tives/negatives are listed in Table 5. Using these measures,
we calculate the precision—the ratio of true positives to all
positive verdicts—and recall—the ratio of true positives to
true positives and false negatives:

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

We also calculate the F-measure—the harmonic mean of
precision and recall—in order to judge the accuracy of oracle
verdicts:

Accuracy (F-measure) = 2 ∗ precision ∗ recall
precision + recall

(5)

6 RESULTS AND DISCUSSION
As previously presented in Table 5, testing outcomes can be
categorized according to the initial verdict as determined by
the model-based oracle before steering; a “fail” verdict is
further delineated according to its reason—a mismatch that
is attributable to either an allowable timing fluctuation, an
unacceptable timing fluctuation or a fault.

For the Infusion Mgr system—when running all tests over
the various implementations (containing either timing devi-
ations or seeded faults as discussed in Section 5.2) using
a standard test oracle comparing the outputs from the SUT
with the outputs predicted by the model-based oracle (15,200
test runs)—11,364 runs indicated that the system under test
passed the test (the SUT and model-based oracle agreed on
the outputs) and 3,936 runs indicated that the test failed (the
SUT and model-based oracle had mismatched outputs). In
an industry application of a model-based oracle, the 3,936
failed tests would have to be examined to determine if the
failure was due to an actual fault in the implementation,
an unacceptable timing deviation from the expected timing
behavior, or an acceptable timing deviation that, although it did
not match the behavior predicted by the model-based oracle,
was within acceptable tolerances—a costly process. Given our
experimental setup, however, we can classify the failed tests
as to the cause of the failure: failure due to timing within
tolerances, failure due to timing not in tolerance, and failure
due to a fault in the SUT. This breakdown is provided in the
“No Adjustment” column of Table 6. As can be seen, 1,406
tests failed even though the timing deviation was within what
would be acceptable—these can be viewed as false positives
and a filtering or steering approach that would have passed
these test runs would provide cost savings. On the other hand,
the steering or filtering should not pass any of the 268 tests
where timing behavior falls outside of tolerance or the 2,229
tests that indicated real faults.

A similar breakdown can be found for the Pacing system in
the “No Adjustment” column of Table 7. About a third of the
test executions—2,992 in total—pass initially. A further 21%,
or 2,208 tests, fail due to acceptable timing deviations. These
should, ideally, pass following the application of steering or
filtering. A further 571 test executions fail due to unacceptable
timing differences, and 4,329 fail due to seeded faults. Steering
and filtering should, ideally, not correct these tests.

Results obtained from the case study showing the effect
of steering or filtering on oracle verdicts are summarized
in Table 6 and 7 respectively, for the Infusion Mgr and
Pacing systems. For both systems, the two dissimilarity metrics
performed identically when steering. The raw results are
presented as laid out in Table 5. For each category, the post-
steering verdict is presented as both a raw number of test

outcomes and as a percentage of total test outcomes. Data
from these tables lead to the precision, recall, and accuracy
values are shown in Table 8 for the default testing scenario
(accepting the initial oracle verdict), steering, and filtering. In
the following sections, we will discuss the results presented
in these tables with regard to our central research questions.

6.1 Performance
By necessity, steering adds overhead to the test execution
process. While steering is performed largely offline—using
traces gathered from the SUT—the execution time required
to perform steering should not be onerous. For tests where
steering is not performed, the framework takes an average of
0.008 seconds of processing time. For tests where steering is
employed, execution takes an average of 13.54 seconds for
Infusion Mgr and 162.91 seconds for Pacing on a worksta-
tion with an Intel Core i7-4790 four core CPU clocked at
3.60GHz and 16 GB of RAM. For simpler models, such as
Infusion Mgr, this is not a substantial increase in execution
time. However, we would like to improve performance on
larger models. This will be a focus of future work.

6.2 Allowing Tolerable Non-Conformance
For the Infusion Mgr system—according to the “No Adjust-
ment” category of Table 6—11% of the tests (1,674 tests)
initially fail due to timing-related non-conformance. Of those,
1406 tests (9.2% of the total) fall within the tolerances set
in the requirements. Steering should result in a pass verdict
for all of those tests. Similarly, of the 2,779 tests (26.9%)
that fail due to timing reasons in the Pacing system, 2,208
(21.2%) fail due to differences that are acceptable, and steering
should account for these execution divergences (see the “No
Adjustment” column of Table 7).

As Table 6 shows, for both dissimilarity metrics, steering is
able to account for almost all of the situations where it should
be able to correct the model. We see that steering using either
distance metric correctly passes 1,245 tests where the timing
deviation was acceptable—tests that without steering failed.
Therefore, we see a sharp increase in precision over the default
situation where no steering is employed (from 0.64 when not
steering, to 0.94 when steering, according to Table 8).

Similar results for steering on the Pacing system can be seen
in Table 7 . Steering correctly changes the verdicts of 2,065 of
the tests that initially failed. As shown in Table 8, this results
in a large increase in precision—from 0.69 when not steering
to 0.97.

Where previously developers would have had to manually
inspect the more than 25% of all test execution traces for the
Infusion Mgr system (the sum of all “fail” verdicts in Table 6)
to determine the causes for their failures (system faults or
otherwise), they could now narrow their focus to the roughly
17% of test executions that still result in failure verdicts post-
steering. For the Pacing system, steering drops this total from
70% inspection rate to a somewhat more manageable 47% (the
sum of all remaining post-steering “fail” verdicts in Table 7).

Given the large number of tests in this study, this reduction
represents a significant savings in time and effort, removing
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Pass (Post-Adjustment) Fail (Post-Adjustment)
Initial Verdict No Adjustment Steering Filtering Steering Filtering

Pass 11,364 (74.8%) 0 (0.0%)
Fail (Due to Timing, Within Tolerance) 1,406 (9.2%) 1,245 (8.2%) 152 (1.0%)
Fail (Due to Timing, Not in Tolerance) 268 (1.8%) 0 (0.0%) 268 (1.8%)

Fail (Due to Fault) 2,229 (14.6%) 43 (0.3%) 1,252 (8.2%) 2186 (14.3%) 977 (6.4%)

TABLE 6: Results when accepting the default verdict, steering, and filtering for Infusion Mgr. Steering results identical for
both dissimilarity metrics.

Pass (Post-Adjustment) Fail (Post-Adjustment)
Initial Verdict No Adjustment Steering Filtering Steering Filtering

Pass 2,992 (29.6%) 0 (0.0%)
Fail (Due to Timing, Within Tolerance) 2,208 (21.2%) 2,065 (20.4%) 1,010 (10.0%) 143 (1.4%) 1,198 (11.9%)
Fail (Due to Timing, Not in Tolerance) 571 (5.7%) 0 (0.0%) 571 (5.7%)

Fail (Due to Fault) 4,329 (42.9%) 297 (2.9%) 258 (2.6%) 4,032 (39.9%) 4,071 (40.3%)

TABLE 7: Results when accepting the default verdict, steering, and filtering for Pacing.

Infusion Mgr Pacing
Technique Precision Recall Accuracy Precision Recall Accuracy

No Adjustment 0.64 1.00 0.78 0.69 1.00 0.82
Filtering 0.89 0.50 0.64 0.79 0.95 0.86

Steering (Both Metrics) 0.94 0.98 0.96 0.97 0.94 0.95

TABLE 8: Precision, recall, and accuracy results when accepting the initial oracle verdict, steering, and filtering. Best values
are marked in bold for each system.

between potentially thousands of execution traces that the
developer would have needed to inspect manually. Still, for
both systems, there were a small number of tests that steering
should have been able to account for (152, or 1% of the test
executions, for Infusion Mgr and 143, or 1.4%, for Pacing).
The reason for the failure of steering to account for allowable
differences can be attributed to a combination of three factors:
the tolerance constraints employed, the dissimilarity metric
employed, and internal design differences between the SUT
and the model-based oracle.

First, it may be that the tolerance constraints were too strict
to allow for situations that should have been considered legal.
As discussed in Section 3.3, the employed tolerance con-
straints play a major role in determining the set of candidate
steering actions. By design, constraints should be relatively
strict—after all, we are overriding the nominal behavior of
the oracle while simultaneously wishing to retain the oracle’s
power to identify faults. Yet, the constraints we apply should
be carefully designed to allow steering to handle these allowed
non-conformance events. In this case, the chosen constraints
may have prevented steering from acting in a relatively small
number of situations in which it should have been able to
account for a behavior difference. This is to be expected, and
one of the strengths of steering is that it is relatively easy
to tune the constraints and execute tests again until the right
balance is struck. Fortunately, for both systems, the chosen
constraints were able to account for the vast majority of
situations that should have been corrected.

Second, the dissimilarity metric plays a role in guiding the
selection of steering action. In our experiments, we noted
no differences between the Manhattan and Squared Euclidean
metrics in the solutions chosen—both took the same steering
actions. By design, the metrics compare the output variables
of the model and SUT (i.e., the set of variables that we use
to determine a test verdict) and compute a numeric score.
For the systems examined, the output variables were relatively
simple numeric or boolean values, and we did not witness any
situations where the metric could be “tricked” into favoring

changes to one particular variable or another. In other types
of systems, the choice of metric may play a more important
role—particularly if, say, string comparisons are needed.

However, although the two metrics performed identically
well, they may also both share the same blind spot. The
metrics compare state in this round of execution, and do not
consider the implications of a steering action in future test
steps. It is possible that multiple candidate steering actions
will result in the same score, but that certain choices will
cause eventual divergences between the model and SUT that
cannot be reconciled at that time. Such a possibility is limited
in this particular experiment due to the strictness of the
tolerance constraints employed, but will be discussed in more
detail with regard to the tolerance experiment examined in
Section 6.5. It is possible that the “wrong” steering actions
were chosen in those cases where steering failed to correct
the verdict—initially closing the execution gap, but causing
further eventual divergence. This indicates a need for further
research work on limiting future side effects when choosing
a steering action, and may necessitate further development of
dissimilarity metrics.

Third, as previously discussed, the tolerance constraints
reduce the space of candidate targets to which the oracle may
be steered. We then use the dissimilarity metric to choose
a “nearest” target from that set of candidates. Thus, the
relationship between the constraints and the metric ultimately
determines the power of the steering process. However, no
matter how capable steering is, there may be situations where
differences in the internal design of the system and model
render steering either ineffective or incorrect. We base steering
decisions on state-based comparisons, but those comparisons
can only be made on the portion of the state variables common
between the SUT and oracle model (and, in particular, we limit
this knowledge to the variables used for the oracle’s verdict
comparison, as these are the only variables we can assume the
common existence of). As a result, there may be situations
where we should have steered, but could not, as the state of
the SUT depended on internal factors not in common with the
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oracle. In general, as the oracle and SUT are both ultimately
based on the same set of requirements, we believe that some
kind of relationship can be established between the internal
variables of both realizations. However, in some cases, the
model and SUT may be too different to allow for steering in
all allowable situations. The inability of steering to account
for tolerable differences for at least some tests in this case
study can likely be attributed to the changes made to the SUT
versions of the models.

In practice, when tuning the precision of steering, the choice
of steering constraints seems to have the largest impact on the
resulting accuracy of the steering process (see Section 6.5).
While we do believe that the choice of metric and the
relationship between the metric and the constraints both play
an important role in determining the effectiveness of steering,
in practice, the set of constraints chosen showed the clearest
correlation to the resulting precision. Therefore, if steering
results in a large number of false failure verdicts, we would
first recommend that testers experiment with different sets of
constraints until the number of false failures has decreased
(without covering up known faults).

6.3 Masking of Faults

As steering changes the behavior of the oracle and can result
in a new test verdict, a risk is that it will mask actual faults in
the system. Such a danger is concerning, but with the proper
choice of steering policies and constraints, we hypothesize that
such a risk can be reduced to an acceptable level.

As can be seen in Table 6, when steering the Infusion Mgr
model, we changed a fault-induced “fail” verdict to “pass”
in forty-three tests. This is a relatively small number—only
0.3% of the 15,200 test executions. This, according to Table 8,
results in a drop in recall from 1.00 (for accepting the initial
verdict) to 0.98. For the Pacing model, as shown in Table 7,
steering adjusted a fault-induced failure to a pass for a small,
but slightly higher, percentage of test executions—258 runs,
or 2.9% of the test executions. The resulting recall is 0.94 for
steering (Table 8).

Although any loss in recall is cause for concern when
working with safety-critical systems, given the small number
of incorrectly adjusted test verdicts for both systems, we
believe that it is unlikely for an actual fault to be entirely
masked by steering on every test in which the fault would
otherwise lead to a failure. Of course, we still would urge
care when working with steering.

Just as the choice of tolerance constraints can explain cases
where steering is unable to account for an allowable non-
conformance, the choice of constraints has a large impact
on the risk of fault-masking. At any given execution step,
steering, as we have defined here, considers only those oracle
post-states as candidate targets that are reachable from the the
given oracle pre-state. However, this by itself is not sufficiently
restrictive to rule out truly deviant behaviors. Therefore, the
constraints applied to reduce that search space must be strong
enough to prevent steering from forcing the oracle into an
otherwise impermissible state for that execution step. It is,
therefore, crucial that proper consideration goes into the choice

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 11,311 (74.4%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance) 312 (2.1%) 1,123 (7.4%)
Fail (Due to Timing,
Not in Tolerance) 0 (0.0%) 268 (1.7%)

Fail (Due to Fault) 598 (3.9%) 1,688 (11.1%)

TABLE 9: Results for step-wise filtering, (outputs + volume
infused oracle), for Infusion Mgr. Raw number, followed by
percent of total.

Technique Precision Recall Accuracy
No Adjustment 0.64 1.00 0.78

Filtering 0.64 0.76 0.70
Steering (Both Metrics) 0.94 0.98 0.96

TABLE 10: Precision, recall, and accuracy values for filtering
(outputs + volume infused oracle) for Infusion Mgr.

of constraints. In some cases, the use of additional policies—
such as not steering the oracle model at all if it does not result
in an exact match with the system—can also lower the risk of
tolerating behaviors that would otherwise indicate faults.

Note that a seeded fault could cause a timing deviation (or
the same behavior that would result from a timing deviation).
In those cases, the failure is still labeled as being induced
by a fault for our experiment. However, if the fault-induced
deviation falls within the tolerances, steering will be able to
account for it. In real world cases, where the faults are not
purposefully induced, it is unlikely that even a human oracle
would label the outcome differently, as they are working from
the same system and domain knowledge that the tolerance
constraints are derived from.

In real-world conditions, if care is taken when deriving the
tolerance constraints from the system requirements, steering
should not cover any behaviors that would not be permissible
under those same requirements. Still, as steering carries the
risk of masking faults, we recommend that it be applied as
a focusing tool—to point the developer toward test failures
likely to indicate faults so that they do not spend as much
time investigating non-conformance reports that turn out to be
allowable. The final verdict on a test should come from a run
of the oracle model with no steering, but during development,
steering can be effective at streamlining the testing process by
concentrating resources on those failures that are more likely
to point to faults.

6.4 Steering vs. Filtering

In some cases, acceptable non-conformance events could sim-
ply be dealt with by applying a filter that, in the case of
a failing test verdict, checks the resulting state of the SUT
against a set of constraints and overrides the initial oracle
verdict if those constraints are met. Such filters are relatively
common in GUI testing [24].

The use of a filter is tempting—if the filter is effective,
it is likely to be easier to build and faster to execute than
a full steering process. Indeed, for Infusion Mgr, the results
in Table 6 appear initially promising. The filter performs
identically to steering for the initial failures that result from
non-deterministic timing differences. It does not issue a pass
verdict for timing issues outside of the tolerance limits, and
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it does issue a pass for almost all of the tests where non-
conformance is within the tolerance bounds. As can be seen
in Table 8, the use of a filter increases the precision from 0.64
for no verdict adjustment to 0.89.

However, when the results for tests that fail due to faults
are considered, a filter appears much less attractive. The filter
issues a passing verdict for 1,252 tests that should have
failed—1,209 more than steering. This is because a filter is a
blunt instrument. It simply checks whether the state of the SUT
meets certain constraints when non-conformance occurs. This
allowed the filter to account for the allowed non-conforming
behaviors, but these same constraints also allowed a large
selection of fault-indicating tests to pass.

This makes the choice of constraints even more important
for filtering than it is in steering. The steering process, by
backtracking the state of the system, is able to ensure that
the resulting behavior of the SUT is even possible (that is,
if the new state is reachable from the previous state). The
filter does not check the possibility of reaching a state; it just
checks whether the new state is globally acceptable under the
given constraints. As a result, steering is far more accurate.
A filter could, of course, incorporate a reachability analysis.
However, as the complexity of the filter increases, the reasons
for filtering instead of steering disappear.

In fact, even the initial success of filtering at accounting for
allowable non-conformance is somewhat misleading for the
Infusion Mgr case example. Both filtering and steering base
their decisions on the output variables of the SUT and oracle,
on the basis that the internal state variables may differ between
the two. For this case study, all of the output variables reflect
current conditions of the infusion pump—how much drug
volume to infuse now, the current system mode, and so forth.
Internally, these factors depend on both the current inputs and a
number of cumulative factors, such as the total volume infused
and the remaining drug volume. Over the long term, non-
conformance events between the SUT and model will build,
eventually leading to wider divergence. For example, the SUT
or the model-based oracle may eventually cut off infusion if
the drug reservoir empties. While a filter may be a perfectly
appropriate solution for static GUIs, the cumulative build-up
of differences in complex systems, will likely render a filter
ineffective on longer time scales.

As the output variables reflect current conditions for this
system, mounting internal differences may be missed, and the
filter may not be able to cope with larger behavior differences
that result from this steady divergence. Steering is able to
prevent these long-term divergences by actually changing the
state of the oracle throughout the execution of the test. A
filter simply overrides the oracle verdict. It does not change
the state of the oracle, and as a result, a filter cannot predict
or handle behavioral divergences once they build beyond the
set of constraints that the filter applies.

We can illustrate this effect by adding a single internal
variable to the set of variables considered when making
filtering or steering conditions—a variable tracking the total
drug volume infused. Adding this variable causes no change to
the results of steering seen in Table 6. However, the addition

of this internal variable dramatically changes the results of
filtering. The new results can be seen in Tables 9 and 10.

Because the total volume infused increases over the exe-
cution of the test, it will reflect any divergence between the
model-based oracle and the SUT. As steering actually adjusts
the execution of the model-based oracle, this volume counter
also adjusts to reflect the changes induced by steering. Thus,
steering is able to account for the growing difference in the
volume infused by the model-based oracle and the volume
infused by the SUT. However, as the filter makes no such
adjustment, it is unable to handle the mounting difference in
this variable (or any other considered variable that reflects
change over time). The filter, even if initially effective, will fail
to account for a large number of acceptable non-conformance
events—ultimately resulting in a precision value no more
effective than not doing anything at all (and a far lower recall).

Similar results can be seen for the Pacing system in Table 7.
The output variables of the Pacing example include both
immediate commands, but also scheduled times for the next
pacing events in both heart chambers. As a result, the output
variables reflect internally-growing divergences between the
model and SUT far more quickly than they appear in Infu-
sion Mgr. Thus, the precision of filtering is far lower than
that of steering for the Pacing system, as the filter struggles to
keep up with the time-dependent changes that mount over the
execution of the test case. When we moved the internal volume
counter variable to the outputs of Infusion Mgr, we saw
precision fall and recall rise. Similarly, for Pacing, precision
is far lower for the filter than for steering, but the loss in
recall is quite small as a result. The filter does not allow many
divergences to pass—legal or illegal. Thus, filtering actually
has a slightly higher level of recall than steering. However, it
comes at a far higher cost to precision.

These results are not intended to indicate that indirect
actions like filtering are never useful. When state does not
have a major, persistent impact, or when the sources of non-
determinism are limited, then a filter may be appropriate—
and will be easier to implement and use. However, in the
system domains we are interested in, state is important, and
non-determinism is common. Therefore, direct actions, such
as steering, are better able to handle the complex divergences
between model and SUT.

6.5 Impact of Tolerance Constraints

The tolerance constraints limit the choice of steering action. In
essence, they define the specification of what non-determinism
we will allow, bounding the variance between the model and
SUT that can be corrected. As emphasized in Section 3.3,
the selection of an appropriate set of constraints in likely a
crucial factor in the success or failure of steering. If tolerance
constraints are too strict, we hypothesize that they will be
useless for correcting the allowable behavioral deviations; too
loose, and dangerous faults may be masked. We saw hints of
this in the initial experiment, which utilized strict tolerance
constraints. We masked only a vanishingly small number of
faults, but we also failed to account for a small number of
tests that should have been handled. The choice of constraints
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Pass (Post-Steering) Fail (Post-Steering)
Initial Verdict Strict Medium Minimal No Input Constraints Strict Medium Minimal No Input Constraints

Pass 1,270 (74.9%) 0 (0.0%)
Fail (Due to Timing,
Within Tolerance) 161 (9.4%) 156 (9.2%) 176 (10.4%) 180 (10.6%) 19 (1.1%) 24 (1.4%) 4 (0.2%) 0 (0.0%)
Fail (Due to Timing,
Not in Tolerance) 0 (0.0%) 30 (1.8%) 35 (2.1%) 35 (2.0%) 5 (0.3%) 0 (0.0%)

Fail (Due to Fault) 0 (0.0%) 1 (0.1%) 92 (5.4%) 210 (12.4%) 209 (12.3%) 118 (7.0%)

TABLE 11: Results for steering with various sets of constraints for the Infusion Mgr system.

Pass (Post-Steering) Fail (Post-Steering)
Initial Verdict Strict Medium/Minimal No Input Constraints Strict Medium/Minimal No Input Constraints

Pass 308 (28.0%) 0 (0.0%)
Fail (Due to Timing,
Within Tolerance) 284 (25.8%) 34 (3.1%) 22 (2.0%) 272 (24.7%)
Fail (Due to Timing,
Not in Tolerance) 3 (0.2%) 70 (6.3%) 6 (0.5%) 81 (7.3%) 14 (1.2%) 78 (7.1%)

Fail (Due to Fault) 30 (2.7%) 40 (3.6%) 46 (4.1%) 372 (33.8%) 362 (32.9%) 356 (32.4%)

TABLE 12: Results for steering with various constraint sets for the Pacing system.

Technique Precision Recall Accuracy
No Adjustment 0.58 1.00 0.73

Filtering 0.89 0.67 0.76
Steering - Strict 0.93 1.00 0.96

Steering - Medium 0.90 0.88 0.89
Steering - Minimal 0.98 0.85 0.91

Steering - No Input Constraints 1.00 0.48 0.65
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TABLE 13: Infusion Mgr precision, recall, and accuracy for
different tolerance constraint levels—as well as filtering and
no adjustment.

Technique Precision Recall Accuracy
No Adjustment 0.61 1.00 0.76

Filtering 0.72 0.93 0.81
Steering - Strict 0.95 0.93 0.94

Steering - Medium 0.94 0.77 0.85
Steering - Minimal 0.94 0.77 0.85

Steering - No Input Constraints 0.62 0.89 0.73
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TABLE 14: Pacing precision, recall, and accuracy values
for different tolerance levels—as well as filtering and no
adjustment.

was a key factor in both the success of steering—not masking
faults—and the limitations of the process—not handling all
acceptable tests.

Given the apparent importance of the selection of tolerance
constraints, we wished to determine the exact impact of the
choice of tolerance constraints. One advantage of using steer-
ing over, say, directly modeling non-determinism is that, by
utilizing a separate collection of rules to specify the bounds on
acceptable non-deterministic deviations, we can easily change
the constraints. By swapping in a new constraint file and re-
executing the test suite, one can examine the effects of steering
with the new limitations. For both Infusion Mgr and Pacing,
we took the implementations and five mutants for the original
and each implementation and executed the test suite using four
different sets of constraints. These are detailed in Section 5.4,
and represent a steady loosening of the constraints from strict
to no constraints at all.

Precision, recall, and accuracy results for Infusion Mgr can
be seen in Table 13. Exact values for accepting the initial
verdict, filtering, and strict constraints differ slightly from
those in Table 8, due to the lower number of mutants used, but
the trends remain the same. As detailed in Table 11, steering
with strict constraints improves precision by quite a bit by
correcting almost all of the acceptable behavioral deviations,
while masking no faults. Filtering, as in Section 6.4, improves
precision, but at the cost of covering up many faults (resulting
in a lower recall value).

As we loosen the constraints to the medium level—detailed
in Table 11—we see a curious drop in precision. A small
number of additional tests that fail due to acceptable non-
determinism still fail after steering. It is likely that this is due
to the sudden availability of additional steering actions. When
presented with more choices, the search process chooses one
of the several that minimizes the dissimilarity metric now,
but causes side effects later on. We will revisit this when
examining the results for the Pacing system. The recall also
dips significantly. Inspecting Table 11 makes the reason for
this clear, when given more freedom to adjust the timer values,
the steering process will naturally cover up unacceptable
timing differences. This underlines the importance of selecting
constraints carefully.
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When examining the results with minimal constraints and
when there are no constraints on the input variables for In-
fusion Mgr, shown in Table 11, two clear trends emerge. The
first is that, as the constraints loosen, the precision rises. Natu-
rally, given the freedom to make larger and larger adjustments
to the selected steerable variables, the search process can
handle more and more of the tests that fail due to acceptable
deviations. Unsurprisingly, this increase in precision comes at
a heavy cost to recall. With minimal constraints, we now not
only can handle more of the acceptable deviations, but we also
cover up many of the unacceptable deviations. Fortunately,
we still effectively do not mask code-based faults. This is an
encouraging result for steering. Although minimal constraints
do cover the bad behaviors induced by non-determinism, we
are still not masking issues within the code of the system.

That changes when we move to steering with no input
constraints on the input variables of Infusion Mgr. Now,
not only can we handle all of the timing-based failures—
acceptable or illegal—we also mask many of the induced faults
as well. This is not unexpected. Given complete freedom to
deviate from the original test inputs, guided only by the use
of the dissimilarity metric, steering will mask many illegal
behaviors. This is a clear illustration of the importance of
selecting the correct constraints. Give too much freedom,
and faults will be masked; too little freedom, and acceptable
deviations will distract testers. It is important to experiment
and strike the correct balance. Fortunately, our initial set of
tolerances seems to have hit a reasonable balance point for
Infusion Mgr.

The precision, recall, and accuracy figures for the Pacing
system appear in Table 14. Again, the results for no adjust-
ment, filtering, and strict steering follow the same trends as
the earlier experiment (see Table 8). Filtering and steering
do equally well on recall, but steering achieves far higher
precision. The filter is unable to keep up with the behavior
divergences that build over time, while steering keeps up by
adjusting execution each time behaviors diverge.

As we shift to the medium, minimal, and no input
constraint results—detailed in Table 12—we see an inter-
esting divergence from the results for Infusion Mgr. Namely,
that rather that improving, the precision actually significantly
drops—from 0.95, to 0.94, and finally to 0.62. Steering the
Pacing model with no input constraints is barely more accurate
on the legal divergences than not steering at all.

By loosening the constraints, we gave the steering algo-
rithm more freedom to manipulate the input values. On the
Infusion Mgr system, this resulted in us being able to handle
more and more of the acceptable behavior differences, but at
the cost of also covering up more and more of the unacceptable
differences. On Pacing, we cover more faults as the constraints
are loosened, but steering actually grows far less capable
at accounting for the acceptable differences. This can be
explained by examining the steerable variables for the Pacing
system, detailed in Table 15.

Unless particularly specific conditions are met, changes to
many of the steerable variables for Pacing will have a delayed
impact on the behavior of the system. For example, altering the
length of one of the refractory periods will only immediately

impact behavior if we are in a refractory period and decrease
that period to be less than the current duration. To give a
second example, enabling or altering ATR mode settings will
only alter behavior if we are already in ATR mode, and even
then, likely only after we have been in it for a longer period
of time. Therefore, given very loose constraints (or worse, no
constraints), it is incredibly easy for the steering algorithm
to configure the immediately-effective variables to minimize
the dissimilarity score, but to also alter one of the delayed
variables in such a way that it eventually drives the model to
diverge from the system. Infusion Mgr, too, has prescription
variables that can have delayed effects, but many of those
could be adjusted again to “fix” the side effect. For Pacing,
many of these side effects can only be “fixed” after they have
damaged conformance.

This issue further highlights the importance of choosing
good constraints, as many of the steering induced changes that
can cause eventual side effects are also changes that would not
address hardware or time-based non-determinism. Intuitively,
changes to the majority of possible timing issues with Pacing
would be restricted to a small number of those input variables
and—even then—would only require small adjustments. You
may want to correct a small delay in pacing, or slightly shift
the end of a refractory period that has lasted too long, but it
is unlikely that you would want to steer either of those factors
by a significant amount, as the end result of a software fault
could impact the health of a patient.

The possibility of choosing a steering action with an un-
desirable delayed side effect points to the need for further
research on both tolerance constraints and dissimilarity met-
rics. We may want to add in a penalty factor on changes
to certain variables to bias the search algorithm towards
first trying the variables with immediate effects. We may
also want to judge the impact of a steering action on both
the immediate differences between the model and SUT and
the impact on eventual differences. However, checking both
current and future behavior is a difficult challenge, as the
computational requirements to perform such a comparison
may not be realistically obtainable.

Ultimately, what we see from both systems is that the choice
of tolerance constraints is crucially important in determining
the capabilities and limitations of steering. Relatively strict
constraints seem to offer the best balance between accounting
for acceptable deviations and masking fault-indicative behav-
ior. As constraints loosen, we run a significantly increased risk
of masking faults or choosing steering actions with undesirable
long-term side effects. That said, the key to determining
a reasonable set of steering constraints is in understanding
the requirements of the system being built and the domain
the device must operate within. Choosing the correct set
of constraints is important, but it is a task that reasonably
experienced developers should be capable of conducting. Our
framework allows experimentation with different sets of con-
straints, allowing developers to find and tune the tolerance
constraints. By using domain knowledge and the software
specifications to build reasonable, well-considered constraints,
we can use steering to enable the use of model-based oracles
and focus the attention of the developers.
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Variable Name Explanation When Behavior is Impacted
IN V EVENT Sensed event indicator for ventricle chambers Immediate
IN A EVENT Sensed event indicator for atrial chambers Immediate

IN EVENT TIME Time of sensor poll Immediate
IN SYSTEM MODE Current system mode Immediate

IN LRL Lower rate limit on paces Likely Delayed
IN URL Upper rate limit on paces Likely Delayed

IN HYSTERESIS RL Optional adaptation of artificial pacing Likely Delayed
rate to natural pacing

IN VRP Ventricular refractory period following a ventricular event Likely Delayed
IN ARP Atrial refractory period following an atrial event Likely Delayed

IN PVARP Atrial refractory period following a ventricular event Likely Delayed
IN PVARP EXTENSION Optional extension on PVARP following certain events Likely Delayed

IN FIXED AVD Fixed timing window between atrial event Likely Delayed
and ventricular reaction

IN DYNAMIC AVD Enables a dynamic timing window between Likely Delayed
atrial events and ventricular reactions

IN DYNAMIC AVD MIN Minimum dynamically-determined value for AVD window Likely Delayed
IN ATR MODE Enables special mode to ease patient Delayed

out of pacemaker-induced atrial tachycardia
IN ATR DURATION Defines minimum period before entering ATR mode Likely Delayed

IN ATR FALLBACK TIME Defines duration of ATR mode Likely Delayed

TABLE 15: Inputs for the Pacing system, explanations of their utility, and when adjustments to those variables will impact
observable system behavior.

6.6 Automatically Deriving Tolerance Constraints

As indicated in the previous section, tolerance constraints play
an important role in the success of steering. Selecting the right
constraints is clearly important; yet, one can imagine scenarios
where the developers are uncertain of what boundaries to set
or even what variables to loosen or constrain. Thus, we were
interested in investigating whether constraints can be learned
from steering against developer-classified test cases.

We took one of the time-delayed implementations of In-
fusion Mgr (called “PBOLUS”) and the implementation of
Pacing, steered using no input constraints for both dissimilarity
metrics, and derived ten sets of tolerance constraints using the
learning process described in Section 4. As the same learning
process can also be applied to refine existing constraints, we
repeated the same process for the strict, medium, and minimal
constraint sets.

The results for PBOLUS are shown in Table 16, where
the reported calculations for the learned constraints are the
median of ten trials. As expected, making no adjustments to
the verdicts when steering PBOLUS results in the lowest pre-
cision. As we did not include any of the implementations with
seeded faults in this experiment, filtering performs very well—
handling the timing fluctuations specific to this implementation
with relative ease. Across the board, the results for the learned
constraints are very positive, on average generally matching or
exceeding filtering.

When learning from the strict, medium, or minimal con-
straints, the learned constraints can only be a tightening of the
constraints being learned from. That is, if particular variables
are already locked down, then those variables will not suddenly
be loosened. Variables that have a tolerance window will
only have that window remain the same size or have that
window shrink—learning will not further open that window.
Thus, a certain ceiling effect forms where, if a developer
missed a variable that should have been steerable, then the
tightening can only help a small amount with performance.
Here, that performance ceiling for tightening seems to line
up with the performance of a filter. This was hinted at for the
Infusion Mgr system in Section 6.4, where the filter performed

((real(IN_EVENT_TIME) = concrete_oracle_IN_EVENT_TIME)
or ((real(IN_EVENT_TIME) >=
concrete_oracle_IN_EVENT_TIME + 2.000000) and
(real(IN_EVENT_TIME) <= concrete_oracle_IN_EVENT_TIME
+ 3.000000)))
((real(IN_AVD_OFFSET) >= concrete_oracle_IN_AVD_OFFSET)
and (real(IN_AVD_OFFSET) <= concrete_oracle_IN_AVD_OFFSET
+ 1.000000))
(real(IN_ARP) = concrete_oracle_IN_ARP)
(real(IN_VRP) = concrete_oracle_IN_VRP)
...
(real(IN_URL) = concrete_oracle_IN_URL)
(real(IN_LRL) = concrete_oracle_IN_LRL)

Fig. 9: Sample constraints learned for Pacing.

as well as strict steering for the allowable deviations. Here, we
see the same effect—when learning from existing constraints,
we can only improve performance to a limited degree.

This tightening may still be useful if a developer is sure of
the variables to steer, but unsure of the bounds to set on those
variables. However, the results of learning from no preexisting
input constraints are interesting because they do not have this
performance limitation. Given just a set of classified tests
with no input constraints, we are free to derive constraints
on any variables and freely set those boundaries. As a result,
for the PBOLUS system, the best results emerge when given
this freedom, with median steering performance after learning
from no input constraints beating steering after learning from
strict tolerance constraints on precision by up to 17%. This
suggests that the strict constraints may actually be stricter than
they need to be, potentially missing variables that should be
adjustable.

Note that we did see minor differences between the execu-
tions using the Manhattan dissimilarity metric and the Squared
Euclidean metric. However, given their identical performance
in prior experiments, we believe the differences noted here are
due to the stochastic nature of the learning process, rather than
a difference induced by the choice of metric.

At first, the results for the learned constraints for Pacing—
shown in rows 3-10 of Table 16—appear very poor. The
constraints learned for Pacing score a median precision of
around 0.26 in almost all cases, and as low as 0.24. Filtering
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Infusion Mgr Pacing
Technique Precision Recall Accuracy Precision Recall Accuracy

No Adjustment 0.18 1.00 0.30 0.24 1.00 0.39
Filtering 0.70 1.00 0.82 0.32 1.00 0.48

Learned from Strict (M) 0.70 1.00 0.82 0.26 1.00 0.42
Learned from Strict (SE) 0.65 1.00 0.77 0.26 1.00 0.42

Learned from Medium (M) 0.70 1.00 0.82 0.26 1.00 0.42
Learned from Medium (SE) 0.70 1.00 0.82 0.26 1.00 0.42
Learned from Minimal (M) 0.73 1.00 0.84 0.26 1.00 0.42
Learned from Minimal (SE) 0.76 1.00 0.86 0.26 1.00 0.42

Learned from No Tolerances (M) 0.82 1.00 0.89 0.24 1.00 0.39
Learned from No Tolerances (SE) 0.76 1.00 0.86 0.26 1.00 0.40

Learned, All Tolerances, After Widening (M/SE) 0.75 0.88 0.81

TABLE 16: Median precision, recall, and accuracy values for learned tolerance constraints for each system. M=Manhattan,
SE=Squared Euclidean dissimilarity function.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Fail (Due to Timing,
Within Tolerance) 9 67
Fail (Due to Timing,
Not in Tolerance) 0 24

TABLE 17: Distribution of results for steering with tolerance
constraints learned from strict constraints for the Pacing sys-
tem. Raw number of test results.

does not do well, either, but does lead the pack with a precision
of 0.32. We can see why the learning results are poor by
examining the detailed test executions, listed in Table 17. The
learned constraints, in almost all cases, are extremely strict.
They never allow illegal behaviors to pass, but they also fail
to compensate for the majority of the legal deviations.

Interestingly, if we look at the learned constraints (an
example set is listed in Figure 9), we see that the learning
process has actually picked up on the correct variables to set
constraints on. In particular, it almost universally allowed the
sensed event indicators to be free and allowed a small window
of adjustment on the event time. However, it set too strict
of a limit on how much those variables could be adjusted.
This is actually an easy “issue” to correct. As mentioned a
number of times, the use of a separate tolerance constraint file
means that it is easy to experiment with different constraints.
Given that we are using a set of classified test results, we can
simply adjust the tolerances and re-execute the tests until the
performance meets a desirable threshold.

Such an adjustment can be done automatically by system-
atically shrinking or widening the learned tolerances until
this threshold is met. In this case, we took the constraints
and increased the bounds by one on both ends. For example,
the IN EVENT TIME tolerance listed in Figure 9 transforms
from 2-3 seconds to allowing an adjustment anywhere from
1-4 seconds. Even this small adjustment leads to markedly
improved results, as can be seen in the last row of Table 16.
Across the board, this small adjustment led to a median accu-
racy result of 0.81—far higher than no adjustment, filtering,
or the original learned constraints.

The results of learning tolerance constraints seem quite
positive. Given a set of classified tests, we are able to extract a
small, strict set of constraints that can be used—perhaps after
a small amount of tuning—to successfully steer a model.

6.7 Summary of Results
The precision, recall, and F-measure for each method—
accepting the initial verdict, steering (using two different
dissimilarity metrics), and filtering—are shown in Table 8.

The default situation, accepting the initial verdict, results
in the lowest precision value. Intuitively, not doing anything
to account for allowed non-conformance will result in a
large number of incorrect “fail” verdicts. However, the default
practice does have the largest recall value. Again, not adjusting
your results will prevent incorrect masking of faults. Filtering
on a step-by-step basis results in higher precision than doing
nothing, but due to the lack of reachability analysis and state
adaptation—both of which used by the steering approach—
the filter masks an unacceptably large number of faults for
Infusion Mgr. For Pacing, filtering is unable to keep up with
the complex divergences that build over time. Although it is
able to improve the level of precision over not adjusting the
verdict, it fails to match the precision gains seen when steering.

Steering performs identically for both of the dissimilarity
metrics used in this study. It is able to adapt the oracle to
handle almost every situation where non-conforming behaviors
are allowed by the system requirements, while masking only
a few faults in a small number of tests. For both systems,
steering results in a large increase in precision, with only a
small cost in recall.

We find that steering results in the highest accuracy for
the final test results for both systems. Steering demonstrates
a higher overall accuracy—balance of precision and recall—
than filtering or accepting the initial verdict, 0.96 to 0.64 and
0.78 for Infusion Mgr and 0.95 to 0.86 and 0.82 for Pacing.

Tolerance constraints play a large role in determining the
efficacy of steering, both limiting the ability of steering to
mask faults and its ability to correct acceptable deviations.
Relatively strict, well-considered constraints strike the best
balance between enabling steering to focus developers and
preventing steering from masking faults. As constraints are
loosened, we observed that steering may be able to account
for more and more acceptable deviations, but at the cost of
also masking many more faults. Alternatively, loose constraints
may also impair steering from performing its job by allowing
the search process to choose a steering action that causes
eventual side-effects.

Fortunately—even if developers are unsure of what vari-
ables to set constraints on—as long as they can classify the
outcome of a set of tests, a set of constraints can automat-
ically be learned. For our case examples, the derived set of
constraints was small, strict, and able to successfully steer the
model (albeit, for Pacing, with a small amount of tuning).

Steering is able to automatically adjust the execution of the
oracle to handle non-deterministic, but acceptable, behavioral
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divergence without covering up most fault-indicative behav-
iors. We, therefore, recommend the use of steering as a tool
for focusing and streamlining the testing process.

7 THREATS TO VALIDITY

External Validity: Our study is limited to two case examples.
Although we are actively working with domain experts to
produce additional systems for future studies, we believe that
the systems we are working with to be representative of the
domains that we are interested in, and that our results will
generalize to other systems in this domain.

We have used Stateflow, translated to Lustre, as our model-
ing language. Other modeling notations can be used to steer.
We do not believe that the modeling language chosen has a
significant impact on the ability to steer the model. Similarly,
we have used Lustre as our implementation language, rather
than more common languages such as C or C++. However,
systems written in Lustre are similar in style to traditional
imperative code produced by code generators used in embed-
ded systems development. A simple syntactic transformation
is sufficient to translate Lustre code to C code.

We have limited our study to fifty mutants for each version
of the case example, resulting in a total of 150 mutants for the
Infusion Mgr system and 100 for the Pacing system. These
values are chosen to yield a reasonable cost for the study,
particularly given the length of each test. It is possible the
number of mutants is too low. Nevertheless, we have found
results using less than 250 mutants to be representative for
similarly-sized systems [45], [42].

Internal Validity: Rather than develop full-featured system
implementations for our study, we instead created alternative
versions of the model—introducing various non-deterministic
behaviors—and used these models and the versions with
seeded faults as our “systems under test.” We believe that these
models are representative approximations of the behavioral
differences we would see in systems running on embedded
hardware. In future work, we plan to generate code from these
models and execute the software on actual hardware platforms.

In our experiments, we used a default testing scenario
(accepting the oracle verdict) and stepwise filtering as baseline
methods for comparison. There may be other techniques—
particularly, other filters—that we could compare against. Still,
we believe that the filter chosen was an acceptable comparison
point, and was designed as such a filter would be in practice.

Construct Validity: We measure the fault finding of oracles
and test suites over seeded faults, rather than real faults
encountered during development of the software. It is possible
that using real faults would lead to different results. Neverthe-
less, Andrews et al. have shown that the use of seeded faults
leads to conclusions similar to those obtained using real faults
in similar fault finding experiments [43].

8 RELATED WORK

Model-based testing (MBT) is a formal method that uses
models of software systems for the derivation of test suites [1].
Such techniques commonly take a model in the form of

a labeled transition system (for example, a finite state ma-
chine) [46], [4] and generate a series of tests to apply to the
SUT. An attempt is made to establish conformance between
the model and the system [47]. Much of the research on model-
based testing is concerned explicitly with the generation of
test input, although some have explored model-based oracle
generation [48]. Such models serve implicitly as oracle on the
generated tests, being the basis on which correctness is judged.

Several authors have examined the use of behavioral models
as test-generation targets for real-time systems [49], [22], [3],
[50], [51]. These models are designed to handle limited forms
of non-deterministic behavior—allowing some flexibility in
terms of the time that output events occur [22], [49], [50],
[51]. Arcuri et al. also model the impact of non-deterministic
hardware failures [49]. Many of these approaches make use
of non-deterministic or special time modeling formalism, such
as UPPAAL [52].

Oracle steering is conceptually similar to dynamic program
steering, the automatic guidance of program execution [25],
[8]. Much of the research in dynamic program steering is
concerned with automatic adaptation to maintain consistent
performance or a certain reliability level when faced with
depleted computational resources [25]. Kannan et al. have
proposed a framework to assure the correctness of software
execution at runtime through corrective steering actions [53].
Although their framework bears similarities to what we are
proposing, our goals are very different—rather than adjusting
the behavior of the live system, we apply steering to the test
oracle in order to better identify fault-indicative behaviors.
The Spec Explorer [9] test generation framework explores the
possible runs of the executable model by applying steering
actions in order to guide the model through various execution
scenarios. It can then use the model as an oracle for the
generated test by checking whether the SUT produces the same
behaviors. Although Spec Explorer also makes use of steering
to guide the execution of behavioral models, their application
and goals differ from ours. They use steering to create tests, but
the final test cases are deterministic. Steering is not applied
when checking conformance. As with the other approaches
to model-based testing of real-time systems discussed in this
section, Spec Explorer may be able to address some of the
issues we are concerned with, but it also suffers from the same
limitations of being locked into a particular model format and
requiring that non-determinism be built into that model.

9 CONCLUSION AND FUTURE WORK

Specifying test oracles is still a major challenge for many
domains, particularly those—such as real-time embedded
systems—where issues related to timing, sensor inaccuracy, or
the limited computation power of the embedded platform may
result in non-deterministic behaviors for multiple applications
of the same input. Behavioral models of systems, often built
for analysis and simulation, are appealing for reuse as oracles.
However, these models typically present an abstracted view of
system execution that may not match the execution reality.
Such models will struggle to differentiate unexpected—but
still acceptable—behavior from behaviors indicative of a fault.
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To address this challenge, we have proposed an automated
model-based oracle steering framework that, upon detecting
a behavioral difference, backtracks and selects—through a
search-based process—a steering action that will bring the
model in line with the execution of the system. To prevent
the model from being forced into an illegal behavior—and
masking a real fault—the search process must select an action
that satisfies certain constraints and minimizes a dissimilarity
metric. This framework allows non-deterministic, but bounded,
behavior differences while preventing future mismatches by
guiding the model, within limits, to match the execution of
the SUT.

Experiments, conducted over complex real-time systems,
have yielded promising results and indicate that steering
significantly increases SUT-oracle conformance with minimal
masking of real faults and, thus, has significant potential for
reducing development costs. The use of our steering frame-
work can allow developers to focus on behavioral difference
indicative of real faults, rather than spending time examining
test failure verdicts that can be blamed on a rigid oracle model.

There is still much room for future work:
• We plan to further examine the impact of different

dissimilarity metrics and tolerance constraints on oracle
verdict accuracy;

• Policies defining when to attempt to steer could deeply
impact the resulting testing process—we plan to define
additional steering policies and explore their use;

• The need to invoke constraint solvers multiple times
throughout execution limits the performance of the steer-
ing framework. We seek improvements to speed and
scalability, and plan to experiment with the use of meta-
heuristic optimization algorithms in place of multiple
calls to an exhaustive solver;

• We would like to examine the use of steering and dissimi-
larity metrics as methods of quantifying non-conformance
and their utility in fault identification and location;

• And, we plan to examine the use of steering to debug
faulty or incomplete oracle models.

10 SOURCE CODE AND DATA
In the interest of allowing others to extend, reproduce, or
otherwise make use of the work that we have conducted, the
research prototype of our steering framework and experimental
data—including the models, mutants, and tests—have been
made freely available under the Mozilla Public License 2.0.

1) Experimental data for each system is available from the
PROMISE repository [54]. This includes the original
Stateflow models, the Lustre translation, fault-seeded
mutants, and randomly-generated tests used in our ex-
periments.

a) The Infusion Mgr data can be found at http://
openscience.us/repo/test-generation/manager.html

b) The Pacing data can be found at http://openscience.
us/repo/test-generation/pacing.html.

2) The source code of the steering framework—and bina-
ries of the required dependencies—can be obtained from
https://github.com/Greg4cr/Steering-Framework.
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